
FORMALIZED MATHEMATICS

Vol. 19, No. 2, Pages 93–102, 2011

Sorting by Exchanging

Grzegorz Bancerek
Białystok Technical University
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Summary. We show that exchanging of pairs in an array which are in
incorrect order leads to sorted array. It justifies correctness of Bubble Sort, In-
sertion Sort, and Quicksort.

MML identifier: EXCHSORT, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following
papers: [20], [6], [11], [1], [8], [16], [12], [13], [10], [9], [17], [18], [3], [4], [2], [7],
[14], [21], [22], [19], [5], and [15].

1. Preliminaries

We adopt the following convention: α, β, γ, δ denote ordinal numbers, k
denotes a natural number, and x, y, z, t, X, Y , Z denote sets.

The following propositions are true:

(1) x ∈ (α+ β) \ α iff there exists γ such that x = α+ γ and γ ∈ β.
(2) Suppose α ∈ β and γ ∈ δ. Then γ 6= α and γ 6= β and δ 6= α and δ 6= β

or γ ∈ α and δ = α or γ ∈ α and δ = β or γ = α and δ ∈ β or γ = α and
δ = β or γ = α and β ∈ δ or α ∈ γ and δ = β or γ = β and β ∈ δ.

(3) If x 6∈ y, then (y ∪ {x}) \ y = {x}.
(4) succx \ x = {x}.
(5) Let f be a function, r be a binary relation, and given x. Then x ∈ f◦r

if and only if there exist y, z such that 〈〈y, z〉〉 ∈ r and 〈〈y, z〉〉 ∈ dom f and
f(y, z) = x.

(6) If α \β 6= ∅, then inf(α \β) = β and sup(α \β) = α and
⋃

(α \β) =
⋃
α.
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(7) If α \ β is non empty and finite, then there exists a natural number n
such that α = β + n.

2. Arrays

Let f be a set. We say that f is segmental if and only if:

(Def. 1) There exist α, β such that π1(f) = α \ β.
In the sequel f , g denote functions.
The following two propositions are true:

(8) If dom f = dom g and f is segmental, then g is segmental.

(9) If f is segmental, then for all α, β, γ such that α ⊆ β ⊆ γ and α,
γ ∈ dom f holds β ∈ dom f.

Let us observe that every function which is transfinite sequence-like is also
segmental and every function which is finite sequence-like is also segmental.

Let us consider α and let s be a set. We say that s is α-based if and only if:

(Def. 2) If β ∈ π1(s), then α ∈ π1(s) and α ⊆ β.
We say that s is α-limited if and only if:

(Def. 3) α = supπ1(s).

Next we state two propositions:

(10) f is α-based and segmental iff there exists β such that dom f = β \ α
and α ⊆ β.

(11) f is β-limited, non empty, and segmental iff there exists α such that
dom f = β \ α and α ∈ β.

Let us observe that every function which is transfinite sequence-like is also
0-based and every function which is finite sequence-like is also 1-based.

The following three propositions are true:

(12) f is inf dom f -based.

(13) f is sup dom f -limited.

(14) If f is β-limited and α ∈ dom f, then α ∈ β.
Let us consider f . The functor base f yielding an ordinal number is defined

as follows:

(Def. 4)(i) f is base f -based if there exists α such that α ∈ dom f,

(ii) base f = 0, otherwise.

The functor limit f yields an ordinal number and is defined as follows:

(Def. 5)(i) f is limit f -limited if there exists α such that α ∈ dom f,

(ii) limit f = 0, otherwise.

Let us consider f . The functor length f yielding an ordinal number is defined
as follows:
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(Def. 6) length f = limit f − base f.

We now state four propositions:

(15) base ∅ = 0 and limit ∅ = 0 and length ∅ = 0.

(16) limit f = sup dom f.

(17) f is limit f -limited.

(18) Every empty set is α-based.

Let us consider α, X, Y . Note that there exists a transfinite sequence which
is Y -defined, X-valued, α-based, segmental, finite, and empty.

An array is a segmental function.
Let A be an array. Observe that domA is ordinal-membered.
We now state the proposition

(19) For every array f holds f is 0-limited iff f is empty.

Let us mention that every array which is 0-based is also transfinite sequence-
like.

Let us consider X. An array of X is an X-valued array.
Let X be a 1-sorted structure. An array of X is an array of the carrier of X.
Let us consider α, X. An array of α, X is α-defined array of X.
In the sequel A, B, C denote arrays.
Next we state several propositions:

(20) base f = inf dom f.

(21) f is base f -based.

(22) domA = limitA \ baseA.

(23) If domA = α \ β and A is non empty, then baseA = β and limitA = α.

(24) For every transfinite sequence f holds base f = 0 and limit f = dom f

and length f = dom f.

Let us consider α, β, X. Note that there exists an array of α, X which is
β-based, natural-valued, integer-valued, real-valued, complex-valued, and finite.

Let us consider α, x. Note that {〈〈α, x〉〉} is segmental.
Let us consider α and let x be a natural number. Observe that {〈〈α, x〉〉} is

natural-valued.
Let us consider α and let x be a real number. One can verify that {〈〈α, x〉〉}

is real-valued.
Let us consider α, let X be a non empty set, and let x be an element of X.

One can check that {〈〈α, x〉〉} is X-valued.
Let us consider α, x. One can check that {〈〈α, x〉〉} is α-based and succα-

limited.
Let us consider β. Note that there exists an array which is non empty, β-

based, natural-valued, integer-valued, real-valued, complex-valued, and finite.
Let X be a non empty set. Note that there exists an array which is non empty,
β-based, finite, and X-valued.

an
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Let s be a transfinite sequence. We introduce s last as a synonym of last s.
Let A be an array. The functor lastA is defined by:

(Def. 7) lastA = A(
⋃

domA).

3. Descending Sequences

Let f be a function. We say that f is descending if and only if:

(Def. 8) For all α, β such that α, β ∈ dom f and α ∈ β holds f(β) ⊂ f(α).

We now state four propositions:

(25) For every finite array f such that for every α such that α, succα ∈ dom f

holds f(succα) ⊂ f(α) holds f is descending.

(26) For every array f such that length f = ω and for every α such that α,
succα ∈ dom f holds f(succα) ⊂ f(α) holds f is descending.

(27) For every transfinite sequence f such that f is descending and f(0) is
finite holds f is finite.

(28) Let f be a transfinite sequence. Suppose f is descending and f(0) is
finite and for every α such that f(α) 6= ∅ holds succα ∈ dom f. Then
last f = ∅.

The scheme A deals with a transfinite sequence A and a unary functor F
yielding a set, and states that:

A is finite
provided the parameters meet the following requirements:
• F(A(0)) is finite, and
• For every α such that succα ∈ domA and F(A(α)) is finite holds
F(A(succα)) ⊂ F(A(α)).

4. Swap

Let us consider X, let f be anX-defined function, and let α, β be sets. Note
that Swap(f, α, β) is X-defined.

Let X be a set, let f be X-valued function, and let x, y be sets. Note that
Swap(f, x, y) is X-valued.

The following propositions are true:

(29) If x, y ∈ dom f, then (Swap(f, x, y))(x) = f(y).

(30) For every array f of X such that x, y ∈ dom f holds (Swap(f, x, y))x =
fy.

(31) If x, y ∈ dom f, then (Swap(f, x, y))(y) = f(x).

(32) For every array f of X such that x, y ∈ dom f holds (Swap(f, x, y))y =
fx.

na
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(33) If z 6= x and z 6= y, then (Swap(f, x, y))(z) = f(z).

(34) For every array f of X such that z ∈ dom f and z 6= x and z 6= y holds
(Swap(f, x, y))z = fz.

(35) If x, y ∈ dom f, then Swap(f, x, y) = Swap(f, y, x).

Let X be a non empty set. Observe that there exists anX-valued non empty
function which is onto.

Let X be a non empty set, let f be an onto X-valued non empty function,
and let x, y be elements of dom f. Note that Swap(f, x, y) is onto.

Let us consider A and let us consider x, y. Note that Swap(A, x, y) is seg-
mental.

We now state the proposition

(36) If x, y ∈ domA, then Swap(Swap(A, x, y), x, y) = A.

Let A be a real-valued array and let us consider x, y. One can verify that
Swap(A, x, y) is real-valued.

5. Permutations

Let A be an array. An array is called a permutation of A if:

(Def. 9) There exists a permutation f of domA such that it = A · f.
We now state several propositions:

(37) For every permutation B of A holds domB = domA and rngB = rngA.

(38) A is a permutation of A.

(39) If A is a permutation of B, then B is a permutation of A.

(40) If A is a permutation of B and B is a permutation of C, then A is a
permutation of C.

(41) Swap(idX , x, y) is one-to-one.

Let X be a non empty set and let x, y be elements of X.
Note that Swap(idX , x, y) is one-to-one, X-valued, and X-defined.
Let X be a non empty set and let x, y be elements of X.
Note that Swap(idX , x, y) is onto and total.
Let X, Y be non empty sets, let f be a function from X into Y , and let x,

y be elements of X. Then Swap(f, x, y) is a function from X into Y .
Next we state three propositions:

(42) If x, y ∈ X and f = Swap(idX , x, y) and X = domA, then
Swap(A, x, y) = A · f.

(43) If x, y ∈ domA, then Swap(A, x, y) is a permutation of A and A is a
permutation of Swap(A, x, y).

(44) Suppose x, y ∈ domA and A is a permutation of B. Then Swap(A, x, y)
is a permutation of B and A is a permutation of Swap(B, x, y).
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6. Exchanging

Let O be a relational structure and let A be an array of O. We say that A
is ascending if and only if:

(Def. 10) For all α, β such that α, β ∈ domA and α ∈ β holds Aα ≤ Aβ.
The functor inversionsA is defined by:

(Def. 11) inversionsA = {〈〈α, β〉〉;α ranges over elements of domA, β ranges over
elements of domA : α ∈ β ∧ Aα 6≤ Aβ}.

Let O be a relational structure. One can verify that every empty array of O
is ascending. Let A be an empty array of O. One can verify that inversionsA is
empty.

In the sequel O is a connected non empty poset and R, Q are arrays of O.
We now state the proposition

(45) For every O and for all elements x, y of O holds x > y iff x 6≤ y.
Let us consider O, R. Then inversionsR can be characterized by the condi-

tion:

(Def. 12) inversionsR = {〈〈α, β〉〉;α ranges over elements of domR, β ranges over
elements of domR : α ∈ β ∧ Rα > Rβ}.

Next we state two propositions:

(46) 〈〈x, y〉〉 ∈ inversionsR iff x, y ∈ domR and x ∈ y and Rx > Ry.

(47) inversionsR ⊆ domR× domR.

Let us consider O and let R be a finite array of O. Observe that inversionsR
is finite.

We now state three propositions:

(48) R is ascending iff inversionsR = ∅.
(49) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈y, x〉〉 6∈ inversionsR.

(50) If 〈〈x, y〉〉, 〈〈y, z〉〉 ∈ inversionsR, then 〈〈x, z〉〉 ∈ inversionsR.

Let us consider O, R. Note that inversionsR is relation-like.
Let us consider O, R. Note that inversionsR is asymmetric and transitive.
Let us consider O and let α, β be elements of O. Let us note that the

predicate α < β is antisymmetric.
Next we state several propositions:

(51) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈x, y〉〉 6∈ inversions Swap(R, x, y).

(52) If x, y ∈ domR and z 6= x and z 6= y and t 6= x and t 6= y, then 〈〈z,
t〉〉 ∈ inversionsR iff 〈〈z, t〉〉 ∈ inversions Swap(R, x, y).

(53) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈z, y〉〉 ∈ inversionsR and z ∈ x iff 〈〈z,
x〉〉 ∈ inversions Swap(R, x, y).

(54) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈z, x〉〉 ∈ inversionsR iff z ∈ x and 〈〈z,
y〉〉 ∈ inversions Swap(R, x, y).
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(55) If 〈〈x, y〉〉 ∈ inversionsR and z ∈ y and 〈〈x, z〉〉 ∈ inversions Swap(R, x, y),
then 〈〈x, z〉〉 ∈ inversionsR.

(56) If 〈〈x, y〉〉 ∈ inversionsR and x ∈ z and 〈〈z, y〉〉 ∈ inversions Swap(R, x, y),
then 〈〈z, y〉〉 ∈ inversionsR.

(57) If 〈〈x, y〉〉 ∈ inversionsR and y ∈ z and 〈〈x, z〉〉 ∈ inversions Swap(R, x, y),
then 〈〈y, z〉〉 ∈ inversionsR.

(58) If 〈〈x, y〉〉 ∈ inversionsR, then y ∈ z and 〈〈x, z〉〉 ∈ inversionsR iff 〈〈y,
z〉〉 ∈ inversions Swap(R, x, y).

Let us consider O, R, x, y. The functor ⊆Rx,y yields a function and is defined
by:

(Def. 13) ⊆Rx,y= Swap(iddomR, x, y)×Swap(iddomR, x, y)+·id{x}×(succ y\x)∪(succ y\x)×{y}.
Next we state the proposition

(59) γ ∈ succβ \ α iff α ⊆ γ ⊆ β.
We adopt the following convention: T is a non empty array of O and p, q,

r, s are elements of domT.

The following propositions are true:

(60) succ q \ p ⊆ domT.

(61) dom ⊆Tp,q= domT × domT and rng ⊆Tp,q⊆ domT × domT.

(62) If p ⊆ r ⊆ q, then (⊆Tp,q)(p, r) = 〈〈p, r〉〉 and (⊆Tp,q)(r, q) = 〈〈r, q〉〉.
(63) If r 6= p and s 6= q and f = Swap(iddomT , p, q), then (⊆Tp,q)(r, s) = 〈〈f(r),

f(s)〉〉.
(64) If r ∈ p and f = Swap(iddomT , p, q), then (⊆Tp,q)(r, q) = 〈〈f(r), f(q)〉〉 and

(⊆Tp,q)(r, p) = 〈〈f(r), f(p)〉〉.
(65) If q ∈ r and f = Swap(iddomT , p, q), then (⊆Tp,q)(p, r) = 〈〈f(p), f(r)〉〉

and (⊆Tp,q)(q, r) = 〈〈f(q), f(r)〉〉.
(66) If p ∈ q, then (⊆Tp,q)(p, q) = 〈〈p, q〉〉.
(67) If p ∈ q and r 6= p and r 6= q and s 6= p and s 6= q, then (⊆Tp,q)(r, s) = 〈〈r,

s〉〉.
(68) If r ∈ p and p ∈ q, then (⊆Tp,q)(r, p) = 〈〈r, q〉〉 and (⊆Tp,q)(r, q) = 〈〈r, p〉〉.
(69) If p ∈ s and s ∈ q, then (⊆Tp,q)(p, s) = 〈〈p, s〉〉 and (⊆Tp,q)(s, q) = 〈〈s, q〉〉.
(70) If p ∈ q and q ∈ s, then (⊆Tp,q)(p, s) = 〈〈q, s〉〉 and (⊆Tp,q)(q, s) = 〈〈p, s〉〉.
(71) If p ∈ q, then ⊆Tp,q �(inversions Swap(T, p, q) qua set) is one-to-one.

Let us consider O, R, x, y, z. Note that (⊆Rx,y)◦z is relation-like.
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7. Correctness of Sorting by Exchanging

The following proposition is true

(72) If 〈〈x, y〉〉 ∈ inversionsR, then (⊆Rx,y)◦ inversions Swap(R, x, y) ⊂
inversionsR.

Let R be a finite function and let us consider x, y. One can check that
Swap(R, x, y) is finite.

Next we state two propositions:

(73) For every array R of O such that 〈〈x, y〉〉 ∈ inversionsR and inversionsR

is finite holds inversions Swap(R, x, y) ∈ inversionsR.

(74) For every finite array R of O such that 〈〈x, y〉〉 ∈ inversionsR holds

inversions Swap(R, x, y) < inversionsR.

Let us consider O, R. A non empty array is called a computation of R if it
satisfies the conditions (Def. 14).

(Def. 14)(i) It(base it) = R,

(ii) for every α such that α ∈ dom it holds it(α) is an array of O, and
(iii) for every α such that α, succα ∈ dom it there exist R, x, y such that
〈〈x, y〉〉 ∈ inversionsR and it(α) = R and it(succα) = Swap(R, x, y).

We now state the proposition

(75) {〈〈α, R〉〉} is a computation of R.

Let us consider O, R, α. One can check that there exists a computation of
R which is α-based and finite.

Let us consider O, R, let C be a computation of R, and let us consider x.
One can check that C(x) is segmental, function-like, and relation-like.

Let us consider O, R, let C be a computation of R, and let us consider x.
Observe that C(x) is the carrier of O-valued.

Let us consider O, R and let C be a computation of R. Observe that lastC
is segmental, relation-like, and function-like.

Let us consider O, R and let C be a computation of R. Observe that lastC
is the carrier of O-valued.

Let us consider O, R and let C be a computation of R. We say that C is
complete if and only if:

(Def. 15) lastC is ascending.

One can prove the following three propositions:

(76) For every 0-based computation C of R such that R is a finite array of O
holds C is finite.

(77) Let C be a 0-based computation of R. Suppose R is a finite array of O
and for every α such that inversionsC(α) 6= ∅ holds succα ∈ domC. Then
C is complete.
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(78) Let C be a finite computation of R. Then lastC is a permutation of R
and for every α such that α ∈ domC holds C(α) is a permutation of R.

8. Existence of Complete Computations

Next we state three propositions:

(79) For every 0-based finite array A of X such that A 6= ∅ holds lastA ∈ X.
(80) last〈x〉 = x.

(81) For every 0-based finite array A holds last(A a 〈x〉) = x.

Let X be a set. Observe that every element of Xω is X-valued.
The scheme A deals with a unary functor F yielding a set, a non empty set

A, a set B, and a binary predicate P, and states that:
There exists a finite 0-based non empty array f and there exists
an element k of A such that
(i) k = last f,
(ii) F(k) = ∅,

(iii) f(0) = B, and
(iv) for every α such that succα ∈ dom f there exist elements
x, y of A such that x = f(α) and y = f(succα) and P[x, y]

provided the following requirements are met:
• B ∈ A,
• F(B) is finite, and
• For every element x of A such that F(x) 6= ∅ there exists an

element y of A such that P[x, y] and F(y) ⊂ F(x).
In the sequel A is an array and B is a permutation of A.
We now state the proposition

(82) B ∈ (rngA)domA.

Let A be a real-valued array. One can verify that every permutation of A is
real-valued.

Let us consider α and let X be a non empty set. Observe that every element
of Xα is transfinite sequence-like.

Let us consider X and let Y be a real-membered non empty set. One can
check that every element of Y X is real-valued.

Let us consider X and let A be an array of X. One can check that every
permutation of A is X-valued.

Let X be a set, let Z be a set, and let Y be a subset of Z. Note that every
element of Y X is Z-valued.

One can prove the following propositions:

(83) Every X-defined Y -valued binary relation is a relation between X and Y .
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(84) For every finite ordinal number α and for every x such that x ∈ α holds
x = 0 or there exists β such that x = succβ.

(85) For every 0-based finite non empty array A of O holds there exists a
0-based computation of A which is complete.

(86) For every 0-based finite non empty array A of O holds there exists a
permutation of A which is ascending.

Let us consider O and let A be a 0-based finite array of O. Observe that
there exists a permutation of A which is ascending.
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