Banach Algebra of Bounded Complex-Valued Functionals

Katuhiko Kanazashi
Shizuoka High School
Japan

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded complex-valued functionals.

MML identifier: $\underline{\text { CCOSP1, }}$, version: $\underline{7.11 .07} 4.160 .1126$

The notation and terminology used in this paper are introduced in the following articles: [2], [16], [9], [14], [7], [8], [3], [18], [17], [4], [19], [5], [15], [1], [20], [12], [11], [10], [21], [13], and [6].

Let V be a complex algebra. A complex algebra is called a complex subalgebra of V if it satisfies the conditions (Def. 1).
(Def. 1)(i) The carrier of it \subseteq the carrier of V,
(ii) the addition of it $=($ the addition of $V) \upharpoonright($ the carrier of it),
(iii) the multiplication of it $=$ (the multiplication of $V) \upharpoonright($ the carrier of it $)$,
(iv) the external multiplication of it $=$ (the external multiplication of V) $\upharpoonright(\mathbb{C} \times$ the carrier of it $)$,
(v) $1_{\mathrm{it}}=1_{V}$, and
(vi) $0_{\text {it }}=0_{V}$.

We now state the proposition
(1) Let X be a non empty set, V be a complex algebra, V_{1} be a non empty subset of V, d_{1}, d_{2} be elements of X, A be a binary operation on X, M be a function from $X \times X$ into X, and M_{1} be a function from $\mathbb{C} \times X$ into X. Suppose that $V_{1}=X$ and $d_{1}=0_{V}$ and $d_{2}=1_{V}$ and $A=$ (the addition of $V) \upharpoonright\left(V_{1}\right)$ and $M=$ (the multiplication of $\left.V\right) \upharpoonright\left(V_{1}\right)$ and $M_{1}=$ (the external multiplication of $\left.V\right) \upharpoonright\left(\mathbb{C} \times V_{1}\right)$ and V_{1} has inverse. Then $\left\langle X, M, A, M_{1}, d_{2}, d_{1}\right\rangle$ is a complex subalgebra of V.

Let V be a complex algebra. One can check that there exists a complex subalgebra of V which is strict.

Let V be a complex algebra and let V_{1} be a subset of V. We say that V_{1} is \mathbb{C}-additively-linearly-closed if and only if:
(Def. 2) $\quad V_{1}$ is add closed and has inverse and for every complex number a and for every element v of V such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.
Let V be a complex algebra and let V_{1} be a subset of V. Let us assume that V_{1} is \mathbb{C}-additively-linearly-closed and non empty. The functor $\operatorname{Mult}\left(V_{1}, V\right)$ yielding a function from $\mathbb{C} \times V_{1}$ into V_{1} is defined as follows:
(Def. 3) $\operatorname{Mult}\left(V_{1}, V\right)=($ the external multiplication of $V) \upharpoonright\left(\mathbb{C} \times V_{1}\right)$.
Let X be a non empty set. The functor \mathbb{C}-BoundedFunctions X yielding a non empty subset of $\operatorname{CAlgebra}(X)$ is defined by:
(Def. 4) \mathbb{C}-BoundedFunctions $X=\{f: X \rightarrow \mathbb{C}: f\lceil X$ is bounded $\}$.
Let X be a non empty set. Note that $\operatorname{CAlgebra}(X)$ is scalar unital.
Let X be a non empty set. One can verify that \mathbb{C}-BoundedFunctions X is \mathbb{C}-additively-linearly-closed and multiplicatively-closed.

Let V be a complex algebra. Observe that there exists a non empty subset of V which is \mathbb{C}-additively-linearly-closed and multiplicatively-closed.

Let V be a non empty CLS structure. We say that V is scalar-multiplcationcancelable if and only if:
(Def. 5) For every complex number a and for every element v of V such that $a \cdot v=0_{V}$ holds $a=0$ or $v=0_{V}$.
One can prove the following two propositions:
(2) Let V be a complex algebra and V_{1} be a \mathbb{C}-additively-linearly-closed multiplicatively-closed non empty subset of V.
Then $\left\langle V_{1}, \operatorname{mult}\left(V_{1}, V\right), \operatorname{Add}\left(V_{1}, V\right), \operatorname{Mult}\left(V_{1}, V\right), \operatorname{One}\left(V_{1}, V\right), \operatorname{Zero}\left(V_{1}, V\right)\right\rangle$ is a complex subalgebra of V.
(3) Let V be a complex algebra and V_{1} be a complex subalgebra of V. Then
(i) for all elements v_{1}, w_{1} of V_{1} and for all elements v, w of V such that $v_{1}=v$ and $w_{1}=w$ holds $v_{1}+w_{1}=v+w$,
(ii) for all elements v_{1}, w_{1} of V_{1} and for all elements v, w of V such that $v_{1}=v$ and $w_{1}=w$ holds $v_{1} \cdot w_{1}=v \cdot w$,
(iii) for every element v_{1} of V_{1} and for every element v of V and for every complex number a such that $v_{1}=v$ holds $a \cdot v_{1}=a \cdot v$,
(iv) $\mathbf{1}_{\left(V_{1}\right)}=\mathbf{1}_{V}$, and
(v) $0_{\left(V_{1}\right)}=0_{V}$.

Let X be a non empty set. The \mathbb{C}-algebra of bounded functions of X yielding a complex algebra is defined by:
(Def. 6) The \mathbb{C}-algebra of bounded functions of $X=$ < \mathbb{C}-BoundedFunctions $X, \operatorname{mult}(\mathbb{C}$-BoundedFunctions $X, \operatorname{CAlgebra}(X))$,

Add (\mathbb{C}-BoundedFunctions X, CAlgebra (X)),
Mult(\mathbb{C}-BoundedFunctions X, CAlgebra (X)),
One $(\mathbb{C}$-BoundedFunctions X, CAlgebra $(X))$,
Zero(\mathbb{C}-BoundedFunctions X, CAlgebra $(X))\rangle$.
One can prove the following proposition
(4) For every non empty set X holds the \mathbb{C}-algebra of bounded functions of X is a complex subalgebra of CAlgebra (X).
Let X be a non empty set. Note that the \mathbb{C}-algebra of bounded functions of X is vector distributive and scalar unital.

Next we state several propositions:
(5) Let X be a non empty set, F, G, H be vectors of the \mathbb{C}-algebra of bounded functions of X, and f, g, h be functions from X into \mathbb{C}. Suppose $f=F$ and $g=G$ and $h=H$. Then $H=F+G$ if and only if for every element x of X holds $h(x)=f(x)+g(x)$.
(6) Let X be a non empty set, a be a complex number, F, G be vectors of the \mathbb{C}-algebra of bounded functions of X, and f, g be functions from X into \mathbb{C}. Suppose $f=F$ and $g=G$. Then $G=a \cdot F$ if and only if for every element x of X holds $g(x)=a \cdot f(x)$.
(7) Let X be a non empty set, F, G, H be vectors of the \mathbb{C}-algebra of bounded functions of X, and f, g, h be functions from X into \mathbb{C}. Suppose $f=F$ and $g=G$ and $h=H$. Then $H=F \cdot G$ if and only if for every element x of X holds $h(x)=f(x) \cdot g(x)$.
(8) For every non empty set X holds $0_{\text {the }} \mathbb{C}$-algebra of bounded functions of $X=$ $X \longmapsto 0$.
(9) For every non empty set X holds $\mathbf{1}_{\text {the }} \mathbb{C}$-algebra of bounded functions of $X=$ $X \longmapsto 1_{\mathbb{C}}$.

Let X be a non empty set and let F be a set. Let us assume that $F \in$ \mathbb{C}-BoundedFunctions X. The functor modetrans (F, X) yields a function from X into \mathbb{C} and is defined by:
(Def. 7) modetrans $(F, X)=F$ and modetrans $(F, X) \upharpoonright X$ is bounded.
Let X be a non empty set and let f be a function from X into \mathbb{C}. The functor PreNorms (f) yields a non empty subset of \mathbb{R} and is defined by:
(Def. 8) PreNorms $(f)=\{|f(x)|: x$ ranges over elements of $X\}$.
We now state two propositions:
(10) For every non empty set X and for every function f from X into \mathbb{C} such that $f \upharpoonright X$ is bounded holds PreNorms (f) is upper bounded.
(11) Let X be a non empty set and f be a function from X into \mathbb{C}. Then $f\lceil X$ is bounded if and only if $\operatorname{PreNorms}(f)$ is upper bounded.

Let X be a non empty set. The functor \mathbb{C}-BoundedFunctionsNorm X yields a function from \mathbb{C}-BoundedFunctions X into \mathbb{R} and is defined by:
(Def. 9) For every set x such that $x \in \mathbb{C}$-BoundedFunctions X holds $(\mathbb{C}$-BoundedFunctionsNorm $X)(x)=\sup \operatorname{PreNorms}(\operatorname{modetrans}(x, X))$.
One can prove the following two propositions:
$(13)^{1}$ For every non empty set X and for every function f from X into \mathbb{C} such that $f \upharpoonright X$ is bounded holds modetrans $(f, X)=f$.
(14) For every non empty set X and for every function f from X into \mathbb{C} such that $f\lceil X$ is bounded holds (\mathbb{C}-BoundedFunctionsNorm $X)(f)=$ sup PreNorms (f).
Let X be a non empty set. The \mathbb{C}-normed algebra of bounded functions of X yielding a normed complex algebra structure is defined by:
(Def. 10) The \mathbb{C}-normed algebra of bounded functions of $X=$ $\langle\mathbb{C}$-BoundedFunctions X, mult $(\mathbb{C}$-BoundedFunctions $X, \operatorname{CAlgebra}(X)$), Add (\mathbb{C}-BoundedFunctions X, CAlgebra (X)), Mult(\mathbb{C}-BoundedFunctions X, CAlgebra (X)), One(\mathbb{C}-BoundedFunctions X, CAlgebra (X)), Zero(\mathbb{C}-BoundedFunctions X, CAlgebra (X)), \mathbb{C}-BoundedFunctionsNorm $X\rangle$.
Let X be a non empty set. One can verify that the \mathbb{C}-normed algebra of bounded functions of X is non empty.

Let X be a non empty set. One can check that the \mathbb{C}-normed algebra of bounded functions of X is unital.

We now state a number of propositions:
(15) Let W be a normed complex algebra structure and V be a complex algebra. Suppose 〈the carrier of W, the multiplication of W, the addition of W, the external multiplication of W, the one of W, the zero of $W\rangle=V$. Then W is a complex algebra.
(16) For every non empty set X holds the \mathbb{C}-normed algebra of bounded functions of X is a complex algebra.
(17) Let X be a non empty set and F be a point of the \mathbb{C}-normed algebra of bounded functions of X.
Then $(\operatorname{Mult}(\mathbb{C}$-BoundedFunctions $X, \operatorname{CAlgebra}(X)))\left(1_{\mathbb{C}}, F\right)=F$.
(18) For every non empty set X holds the \mathbb{C}-normed algebra of bounded functions of X is a complex linear space.
(19) For every non empty set X holds
$X \longmapsto 0=0_{\text {the }} \mathbb{C}$-normed algebra of bounded functions of X.
(20) Let X be a non empty set, x be an element of X, f be a function from X into \mathbb{C}, and F be a point of the \mathbb{C}-normed algebra of bounded functions of X. If $f=F$ and $f \upharpoonright X$ is bounded, then $|f(x)| \leq\|F\|$.

[^0](21) For every non empty set X and for every point F of the \mathbb{C}-normed algebra of bounded functions of X holds $0 \leq\|F\|$.
(22) Let X be a non empty set and F be a point of the \mathbb{C} normed algebra of bounded functions of X. Suppose $F=$ $0_{\text {the }} \mathbb{C}$-normed algebra of bounded functions of X. Then $0=\|F\|$.
(23) Let X be a non empty set, f, g, h be functions from X into \mathbb{C}, and F, G, H be points of the \mathbb{C}-normed algebra of bounded functions of X. Suppose $f=F$ and $g=G$ and $h=H$. Then $H=F+G$ if and only if for every element x of X holds $h(x)=f(x)+g(x)$.
(24) Let X be a non empty set, a be a complex number, f, g be functions from X into \mathbb{C}, and F, G be points of the \mathbb{C}-normed algebra of bounded functions of X. Suppose $f=F$ and $g=G$. Then $G=a \cdot F$ if and only if for every element x of X holds $g(x)=a \cdot f(x)$.
(25) Let X be a non empty set, f, g, h be functions from X into \mathbb{C}, and F, G, H be points of the \mathbb{C}-normed algebra of bounded functions of X. Suppose $f=F$ and $g=G$ and $h=H$. Then $H=F \cdot G$ if and only if for every element x of X holds $h(x)=f(x) \cdot g(x)$.
(26) Let X be a non empty set, a be a complex number, and F, G be points of the \mathbb{C}-normed algebra of bounded functions of X. Then
(i) if $\|F\|=0$, then $F=0_{\text {the }} \mathbb{C}$-normed algebra of bounded functions of X,
(ii) if $F=0_{\text {the }} \mathbb{C}$-normed algebra of bounded functions of X, then $\|F\|=0$,
(iii) $\|a \cdot F\|=|a| \cdot\|F\|$, and
(iv) $\quad\|F+G\| \leq\|F\|+\|G\|$.

Let X be a non empty set. Note that the \mathbb{C}-normed algebra of bounded functions of X is right complementable, Abelian, add-associative, right zeroed, vector distributive, scalar distributive, scalar associative, scalar unital, discernible, reflexive, and complex normed space-like.

We now state two propositions:
(27) Let X be a non empty set, f, g, h be functions from X into \mathbb{C}, and F, G, H be points of the \mathbb{C}-normed algebra of bounded functions of X. Suppose $f=F$ and $g=G$ and $h=H$. Then $H=F-G$ if and only if for every element x of X holds $h(x)=f(x)-g(x)$.
(28) Let X be a non empty set and s_{1} be a sequence of the \mathbb{C}-normed algebra of bounded functions of X. If s_{1} is CCauchy, then s_{1} is convergent.
Let X be a non empty set. Observe that the \mathbb{C}-normed algebra of bounded functions of X is complete.

Next we state the proposition
(29) For every non empty set X holds the \mathbb{C}-normed algebra of bounded functions of X is a complex Banach algebra.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Noboru Endou. Banach algebra of bounded complex linear operators. Formalized Mathematics, 12(3):237-242, 2004.
[8] Noboru Endou. Complex linear space and complex normed space. Formalized Mathematics, 12(2):93-102, 2004.
[9] Noboru Endou. Complex valued functions space. Formalized Mathematics, 12(3):231-235, 2004.
[10] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[11] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[14] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex functions. Formalized Mathematics, 9(1):179-184, 2001.
[15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Yasunari Shidama, Hikofumi Suzuki, and Noboru Endou. Banach algebra of bounded functionals. Formalized Mathematics, 16(2):115-122, 2008, doi:10.2478/v10037-008-0017-
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[18] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received November 20, 2010

[^0]: ${ }^{1}$ The proposition (12) has been removed.

