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Summary. In this article, we formalize integral linear spaces, that is a li-
near space with integer coefficients. Integral linear spaces are necessary for lattice
problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs
short lattice base and cryptographic systems with lattice [8].
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The notation and terminology used here have been introduced in the following
papers: [1], [10], [3], [9], [11], [2], [4], [6], [16], [14], [13], [12], [5], [7], [15], and
[17].

1. Preliminaries

The following propositions are true:

(1) Let X be a real linear space and R1, R2 be finite sequences of elements
of X. If lenR1 = lenR2, then

∑
(R1 +R2) =

∑
R1 +

∑
R2.

(2) Let X be a real linear space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1−R2, then

∑
R3 =

∑
R1−∑

R2.

(3) Let X be a real linear space, R1, R2 be finite sequences of elements of
X, and a be an element of R. If R2 = aR1, then

∑
R2 = a ·

∑
R1.
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2. Integral Linear Space

For simplicity, we use the following convention: x denotes a set, a denotes a
real number, i denotes an integer, V denotes a real linear space, v, v1, v2, v3,
u, w, w1, w2, w3 denote vectors of V , A, B denote subsets of V , L denotes a
linear combination of V , and l, l1, l2 denote linear combinations of A.

Let us consider V , i, L. The functor i ·L yielding a linear combination of V
is defined as follows:

(Def. 1) For every v holds (i · L)(v) = i · L(v).

Let us consider V , A. The functor LinZA yielding a subset of V is defined
by:

(Def. 2) LinZA = {
∑
l : rng l ⊆ Z}.

One can prove the following propositions:

(4) (i) · l = i · l.
(5) If rng l1 ⊆ Z and rng l2 ⊆ Z, then rng(l1 + l2) ⊆ Z.
(6) If rng l ⊆ Z, then rng(i · l) ⊆ Z.
(7) rng(0LCV ) ⊆ Z.
(8) LinZA ⊆ the carrier of Lin(A).

(9) If v, u ∈ LinZA, then v + u ∈ LinZA.

(10) If v ∈ LinZA, then i · v ∈ LinZA.

(11) 0V ∈ LinZA.

(12) If x ∈ A, then x ∈ LinZA.

(13) If A ⊆ B, then LinZA ⊆ LinZB.

(14) LinZ(A ∪B) = (LinZA) + LinZB.

(15) LinZ(A ∩B) ⊆ (LinZA) ∩ LinZB.

(16) x ∈ LinZ{v} iff there exists an integer a such that x = a · v.
(17) v ∈ LinZ{v}.
(18) x ∈ v + LinZ{w} iff there exists an integer a such that x = v + a · w.
(19) x ∈ LinZ{w1, w2} iff there exist integers a, b such that x = a ·w1 + b ·w2.

(20) w1 ∈ LinZ{w1, w2}.
(21) x ∈ v + LinZ{w1, w2} iff there exist integers a, b such that x = v + a ·

w1 + b · w2.

(22) x ∈ LinZ{v1, v2, v3} iff there exist integers a, b, c such that x = a · v1 +
b · v2 + c · v3.

(23) w1, w2, w3 ∈ LinZ{w1, w2, w3}.
(24) x ∈ v + LinZ{w1, w2, w3} iff there exist integers a, b, c such that x =

v + a · w1 + b · w2 + c · w3.
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(25) Let x be a set. Then x ∈ LinZA if and only if there exist finite sequences
g1, h1 of elements of V and there exists an integer-valued finite sequence a1

such that x =
∑
h1 and rng g1 ⊆ A and len g1 = lenh1 and len g1 = len a1

and for every natural number i such that i ∈ Seg len g1 holds (h1)i =
a1(i) · (g1)i.

Let R4 be a real linear space and let f be a finite sequence of elements of R4.
The functor LinZ f yielding a subset of R4 is defined by the condition (Def. 3).

(Def. 3) LinZ f = {
∑
g; g ranges over len f -element finite sequences of ele-

ments of R4:
∨
a : len f -element integer-valued finite sequence

∧
i : natural number (i ∈

Seg len f ⇒ gi = a(i) · fi)}.
One can prove the following propositions:

(26) Let R4 be a real linear space, f be a finite sequence of elements of R4,
and x be a set. Then x ∈ LinZ f if and only if there exists a len f -element
finite sequence g of elements of R4 and there exists a len f -element integer-
valued finite sequence a such that x =

∑
g and for every natural number

i such that i ∈ Seg len f holds gi = a(i) · fi.
(27) Let R4 be a real linear space, f be a finite sequence of elements of R4,

x, y be elements of R4, and a, b be elements of Z. If x, y ∈ LinZ f, then
a · x+ b · y ∈ LinZ f.

(28) For every real linear space R4 and for every finite sequence f of elements
of R4 such that f = Seg len f 7−→ 0(R4) holds

∑
f = 0(R4).

(29) Let R4 be a real linear space, f be a finite sequence of elements of R4,
v be an element of R4, and i be a natural number. If i ∈ Seg len f and
f = (Seg len f 7−→ 0(R4))+·({i} 7−→ v), then

∑
f = v.

(30) Let R4 be a real linear space, f be a finite sequence of elements of R4,
and i be a natural number. If i ∈ Seg len f, then fi ∈ LinZ f.

(31) For every real linear space R4 and for every finite sequence f of elements
of R4 holds rng f ⊆ LinZ f.

(32) LetR4 be a real linear space, f be a non empty finite sequence of elements
of R4, g, h be finite sequences of elements of R4, and s be an integer-valued
finite sequence. Suppose rng g ⊆ LinZ f and len g = len s and len g = lenh
and for every natural number i such that i ∈ Seg len g holds hi = s(i) · gi.
Then

∑
h ∈ LinZ f.

(33) For every real linear space R4 and for every non empty finite sequence
f of elements of R4 holds LinZ rng f = LinZ f.

(34) Lin(LinZA) = Lin(A).

(35) Let x be a set, g1, h1 be finite sequences of elements of V , and a1 be an
integer-valued finite sequence. Suppose x =

∑
h1 and rng g1 ⊆ LinZA and

len g1 = lenh1 and len g1 = len a1 and for every natural number i such
that i ∈ Seg len g1 holds (h1)i = a1(i) · (g1)i. Then x ∈ LinZA.
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(36) LinZ LinZA = LinZA.

(37) If LinZA = LinZB, then Lin(A) = Lin(B).
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