Partial Differentiation of Vector-Valued Functions on n-Dimensional Real Normed Linear Spaces

Takao Inoué Inaba 2205, Wing-Minamikan Nagano, Nagano, Japan

Adam Naumowicz
Institute of Computer Science
University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Noboru Endou Gifu National College of Technology Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we define and develop partial differentiation of vector-valued functions on n-dimensional real normed linear spaces (refer to [19] and [20]).

MML identifier: PDIFF_7, version: 7.11.07 4.156.1112

The notation and terminology used in this paper have been introduced in the following papers: [7], [15], [2], [3], [24], [4], [5], [1], [11], [16], [6], [9], [12], [17], [18], [10], [8], [23], [14], [21], [13], and [22].

For simplicity, we use the following convention: n, m denote non empty elements of \mathbb{N} , i, j denote elements of \mathbb{N} , f denotes a partial function from $\langle \mathcal{E}^m, \|\cdot\| \rangle$ to $\langle \mathcal{E}^n, \|\cdot\| \rangle$, g denotes a partial function from \mathcal{R}^m to \mathbb{R} , h denotes a partial function from \mathcal{R}^m to \mathbb{R} , x denotes a point of $\langle \mathcal{E}^m, \|\cdot\| \rangle$, y denotes an element of \mathcal{R}^m , and X denotes a set.

We now state a number of propositions:

- (1) If $i \leq j$, then $\langle \underbrace{0, \dots, 0}_{j} \rangle \upharpoonright i = \langle \underbrace{0, \dots, 0}_{i} \rangle$.
- (2) If $i \leq j$, then $\langle \underbrace{0, \dots, 0}_{i} \rangle \upharpoonright (i 1) = \langle \underbrace{0, \dots, 0}_{i-1} \rangle$.
- (3) $\langle \underbrace{0,\ldots,0}_{j} \rangle_{|i} = \langle \underbrace{0,\ldots,0}_{j-i} \rangle.$
- (4) If $i \leq j$, then $\langle \underbrace{0, \dots, 0}_{j} \rangle \upharpoonright (i '1) = \langle \underbrace{0, \dots, 0}_{i '1} \rangle$ and $\langle \underbrace{0, \dots, 0}_{j} \rangle \upharpoonright_{i} = \langle \underbrace{0, \dots, 0}_{j 'i} \rangle$.
- (5) For every element x_1 of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ such that $1 \leq i \leq j$ holds $\|(\operatorname{reproj}(i, 0_{\langle \mathcal{E}^j, \| \cdot \| \rangle}))(x_1)\| = \|x_1\|.$
- (6) Let m, i be elements of \mathbb{N} , x be an element of \mathbb{R}^m , and r be a real number. Then $(\operatorname{reproj}(i, x))(r) - x = (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(r - (\operatorname{proj}(i, m))(x))$ and $x - (\operatorname{reproj}(i, x))(r) = (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))((\operatorname{proj}(i, m))(x) - r).$
- (7) Let m, i be elements of \mathbb{N} , x be a point of $\langle \mathcal{E}^m, \| \cdot \| \rangle$, and p be a point of $\langle \mathcal{E}^1, \| \cdot \| \rangle$. Then $(\operatorname{reproj}(i, x))(p) x = (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \| \cdot \| \rangle}))(p (\operatorname{Proj}(i, m))(x))$ and $x (\operatorname{reproj}(i, x))(p) = (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \| \cdot \| \rangle}))((\operatorname{Proj}(i, m))(x) p)$.
- (8) Let m, n be non empty elements of \mathbb{N} , i be an element of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and Z be a subset of $\langle \mathcal{E}^m, \| \cdot \| \rangle$. Suppose Z is open and $1 \leq i \leq m$. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \text{dom } f$ and for every point x of $\langle \mathcal{E}^m, \| \cdot \| \rangle$ such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.
- (9) For all elements x, y of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds $\operatorname{Replace}(\langle \underbrace{0, \dots, 0}_{m} \rangle, i, x + y) = \operatorname{Replace}(\langle \underbrace{0, \dots, 0}_{m} \rangle, i, x) + \operatorname{Replace}(\langle \underbrace{0, \dots, 0}_{m} \rangle, i, y).$
- (10) For all elements x, a of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds $\operatorname{Replace}(\underbrace{\langle 0, \dots, 0 \rangle}_{m}, i, a \cdot x) = a \cdot \operatorname{Replace}(\underbrace{\langle 0, \dots, 0 \rangle}_{m}, i, x).$
- (11) For every element x of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i \leq m$ and $x \neq 0$ holds Replace($(\underbrace{0, \dots, 0}_{m}), i, x) \neq (\underbrace{0, \dots, 0}_{m})$.
- (12) Let x, y be elements of \mathbb{R} , z be an element of \mathbb{R}^m , and i be an element of \mathbb{N} . Suppose $1 \leq i \leq m$ and $y = (\operatorname{proj}(i, m))(z)$. Then $\operatorname{Replace}(z, i, x) z = \operatorname{Replace}(\langle \underbrace{0, \dots, 0}_{m} \rangle, i, x y)$ and $z \operatorname{Replace}(z, i, x) = \operatorname{Replace}(\langle \underbrace{0, \dots, 0}_{m} \rangle, i, y x)$.

- (13) For all elements x, y of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i$ $i \leq m \text{ holds } (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(x + y) = (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(x) + (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(y).$ $(\operatorname{reproj}(i,\langle \underbrace{0,\ldots,0}\rangle))(y).$
- (14) For all points x, y of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ and for every element i of \mathbb{N} such that $1 \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x) + i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x) + i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ holds } (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle})(x+y) = i \leq m \text{ hold } (\operatorname{repr$ $(\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(y).$
- (15) For all elements x, a of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds $(\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(a \cdot x) = a \cdot (\operatorname{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(x).$ (16) Let x be a point of $\langle \mathcal{E}^{1}, \|\cdot\| \rangle$, a be an element of \mathbb{R} , and i be an element of
- \mathbb{N} . If $1 \leq i \leq m$, then $(\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, ||\cdot|| \rangle}))(a \cdot x) = a \cdot (\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, ||\cdot|| \rangle}))(x)$.
- (17) For every element x of \mathbb{R} and for every element i of \mathbb{N} such that $1 \leq i \leq m$ and $x \neq 0$ holds $(\text{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(x) \neq \langle \underbrace{0, \dots, 0}_{m} \rangle.$
- (18) For every point x of $\langle \mathcal{E}^1, \| \cdot \| \rangle$ and for every element i of N such that $1 \leq i \leq m \text{ and } x \neq 0_{\langle \mathcal{E}^1, \|\cdot\| \rangle} \text{ holds } (\text{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(x) \neq 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}.$
- (19) Let x, y be elements of \mathbb{R} , z be an element of \mathbb{R}^m , and i be an element of N. Suppose $1 \le i \le m$ and y = (proj(i, m))(z). Then $(\operatorname{reproj}(i,z))(x) - z = (\operatorname{reproj}(i,\langle \underbrace{0,\ldots,0}_{m}\rangle))(x-y)$ and $z - (\operatorname{reproj}(i,z))(x) = (\operatorname{reproj}(i,\langle \underbrace{0,\ldots,0}_{m}\rangle))(y-x)$.
- (20) Let x, y be points of $\langle \mathcal{E}^1, \| \cdot \| \rangle$, i be an element of \mathbb{N} , and z be a point of $\langle \mathcal{E}^m, \| \cdot \| \rangle$. Suppose $1 \leq i \leq m$ and $y = (\operatorname{Proj}(i, m))(z)$. Then $(\operatorname{reproj}(i,z))(x)-z=(\operatorname{reproj}(i,0_{\langle \mathcal{E}^m,\|\cdot\|\rangle}))(x-y) \text{ and } z-(\operatorname{reproj}(i,z))(x)=$ $(\operatorname{reproj}(i, 0_{\langle \mathcal{E}^m, \|\cdot\| \rangle}))(y-x).$
- (21) Suppose f is differentiable in x and $1 \leq i \leq m$. Then f is partially differentiable in x w.r.t. i and partdiff $(f, x, i) = f'(x) \cdot \text{reproj}(i, 0_{\langle \mathcal{E}^m, ||\cdot||\rangle})$.
- (22) Suppose g is differentiable in y and $1 \le i \le m$. Then g is partially differentiable in y w.r.t. i and partdiff $(g, y, i) = (g'(y) \cdot \text{reproj}(i, 0_{\langle \mathcal{E}^m, ||.|| \rangle}))(\langle 1 \rangle)$.

Let n be a non empty element of N, let f be a partial function from \mathbb{R}^n to \mathbb{R} , and let x be an element of \mathbb{R}^n . We say that f is differentiable in x if and only if:

(Def. 1) $\langle f \rangle$ is differentiable in x.

Let n be a non empty element of N, let f be a partial function from \mathbb{R}^n to \mathbb{R} , and let x be an element of \mathbb{R}^n . The functor f'(x) yielding a function from \mathbb{R}^n into \mathbb{R} is defined as follows:

(Def. 2) $f'(x) = \operatorname{proj}(1,1) \cdot \langle f \rangle'(x)$.

Next we state several propositions:

- (23) Suppose h is differentiable in y and $1 \le i \le m$. Then h is partially differentiable in y w.r.t. i and partdiff $(h, y, i) = (h \cdot \text{reproj}(i, y))'((\text{proj}(i, m))(y))$ and partdiff $(h, y, i) = h'(y)((\text{reproj}(i, \langle \underbrace{0, \dots, 0}_{m} \rangle))(1))$.
- (24) Let m be a non empty element of \mathbb{N} and v, w, u be finite sequences of elements of \mathbb{R}^m . If dom v = dom w and u = v + w, then $\sum u = \sum v + \sum w$.
- (25) Let m be a non empty element of \mathbb{N} , r be a real number, and w, u be finite sequences of elements of \mathbb{R}^m . If u = r w, then $\sum u = r \cdot \sum w$.
- (26) Let n be a non empty element of \mathbb{N} and h, g be finite sequences of elements of \mathbb{R}^n . Suppose len h = len g + 1 and for every natural number i such that $i \in \text{dom } g$ holds $g_i = h_i h_{i+1}$. Then $h_1 h_{\text{len } h} = \sum g$.
- (27) Let n be a non empty element of \mathbb{N} and h, g, j be finite sequences of elements of \mathbb{R}^n . Suppose $\operatorname{len} h = \operatorname{len} j$ and $\operatorname{len} g = \operatorname{len} j$ and for every natural number i such that $i \in \operatorname{dom} j$ holds $j_i = h_i g_i$. Then $\sum j = \sum h \sum g$.
- (28) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and x, y be elements of \mathbb{R}^m . Then there exists a finite sequence h of elements of \mathbb{R}^m and there exists a finite sequence g of elements of \mathbb{R}^n such that
 - (i) len h = m + 1,
 - (ii) $\operatorname{len} g = m$,
- (iii) for every natural number i such that $i \in \text{dom } h$ holds $h_i = (y \upharpoonright ((m + 1) i)) \cap (\underbrace{0, \dots, 0}_{i-1}),$
- (iv) for every natural number i such that $i \in \text{dom } g$ holds $g_i = f_{x+h_i} f_{x+h_{i+1}}$,
- (v) for every natural number i and for every element h_1 of \mathbb{R}^m such that $i \in \text{dom } h$ and $h_i = h_1$ holds $|h_1| \leq |y|$, and
- (vi) $f_{x+y} f_x = \sum g$.
- (29) Let m be a non empty element of \mathbb{N} and f be a partial function from \mathbb{R}^m to \mathbb{R}^1 . Then there exists a partial function f_0 from \mathbb{R}^m to \mathbb{R} such that $f = \langle f_0 \rangle$.
- (30) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , f_0 be a partial function from $\langle \mathcal{E}^m, || \cdot || \rangle$ to $\langle \mathcal{E}^n, || \cdot || \rangle$, x be an element of \mathcal{R}^m , and x_0 be an element of $\langle \mathcal{E}^m, || \cdot || \rangle$. If $x \in \text{dom } f$ and $x = x_0$ and $f = f_0$, then $f_x = (f_0)_{x_0}$.

Let m be a non empty element of \mathbb{N} and let X be a subset of \mathbb{R}^m . We say that X is open if and only if:

(Def. 3) There exists a subset X_0 of $\langle \mathcal{E}^m, \| \cdot \| \rangle$ such that $X_0 = X$ and X_0 is open. The following proposition is true

(31) Let m be a non empty element of \mathbb{N} and X be a subset of \mathbb{R}^m . Then X is open if and only if for every element x of \mathbb{R}^m such that $x \in X$ there exists a real number r such that r > 0 and $\{y \in \mathbb{R}^m : |y - x| < r\} \subseteq X$.

Let m, n be non empty elements of \mathbb{N} , let i be an element of \mathbb{N} , let f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and let X be a set. We say that f is partially differentiable on X w.r.t. i if and only if:

(Def. 4) $X \subseteq \text{dom } f$ and for every element x of \mathbb{R}^m such that $x \in X$ holds $f \upharpoonright X$ is partially differentiable in x w.r.t. i.

One can prove the following propositions:

- (32) Let m, n be non empty elements of \mathbb{N} and f be a partial function from \mathbb{R}^m to \mathbb{R}^n . Suppose f is partially differentiable on X w.r.t. i. Then X is a subset of \mathbb{R}^m .
- (33) Let m, n be non empty elements of \mathbb{N} , i be an element of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , g be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and Z be a set. Suppose f = g. Then f is partially differentiable on Z w.r.t. i if and only if g is partially differentiable on Z w.r.t. i.
- (34) Let m, n be non empty elements of \mathbb{N} , i be an element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and Z be a subset of \mathbb{R}^m . Suppose Z is open and $1 \leq i \leq m$. Then f is partially differentiable on Z w.r.t. i if and only if $Z \subseteq \text{dom } f$ and for every element x of \mathbb{R}^m such that $x \in Z$ holds f is partially differentiable in x w.r.t. i.

Let m, n be non empty elements of \mathbb{N} , let i be an element of \mathbb{N} , let f be a partial function from \mathcal{R}^m to \mathcal{R}^n , and let us consider X. Let us assume that f is partially differentiable on X w.r.t. i. The functor $f \upharpoonright^i X$ yielding a partial function from \mathcal{R}^m to \mathcal{R}^n is defined as follows:

(Def. 5) $\operatorname{dom}(f \upharpoonright^{i} X) = X$ and for every element x of \mathcal{R}^{m} such that $x \in X$ holds $(f \upharpoonright^{i} X)_{x} = \operatorname{partdiff}(f, x, i)$.

Let m, n be non empty elements of \mathbb{N} , let f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and let x_0 be an element of \mathbb{R}^m . We say that f is continuous in x_0 if and only if:

(Def. 6) There exists a point y_0 of $\langle \mathcal{E}^m, \| \cdot \| \rangle$ and there exists a partial function g from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$ such that $x_0 = y_0$ and f = g and g is continuous in y_0 .

The following propositions are true:

- (35) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^n , g be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$, x be an element of \mathbb{R}^m , and y be a point of $\langle \mathcal{E}^m, \| \cdot \| \rangle$. Suppose f = g and x = y. Then f is continuous in x if and only if g is continuous in y.
- (36) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and x_0 be an element of \mathbb{R}^m . Then f is continuous in x_0 if and

only if the following conditions are satisfied:

- (i) $x_0 \in \text{dom } f$, and
- (ii) for every real number r such that 0 < r there exists a real number s such that 0 < s and for every element x_2 of \mathbb{R}^m such that $x_2 \in \text{dom } f$ and $|x_2 x_0| < s$ holds $|f_{x_2} f_{x_0}| < r$.

Let m, n be non empty elements of \mathbb{N} , let f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and let us consider X. We say that f is continuous on X if and only if:

(Def. 7) $X \subseteq \text{dom } f$ and for every element x_0 of \mathbb{R}^m such that $x_0 \in X$ holds $f \upharpoonright X$ is continuous in x_0 .

Next we state a number of propositions:

- (37) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathcal{R}^n , g be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^n, \| \cdot \| \rangle$, and X be a set. If f = g, then f is continuous on X iff g is continuous on X.
- (38) Let m, n be non empty elements of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^n , and X be a set. Then f is continuous on X if and only if the following conditions are satisfied:
 - (i) $X \subseteq \text{dom } f$, and
 - (ii) for every element x_0 of \mathbb{R}^m and for every real number r such that $x_0 \in X$ and 0 < r there exists a real number s such that 0 < s and for every element x_2 of \mathbb{R}^m such that $x_2 \in X$ and $|x_2 x_0| < s$ holds $|f_{x_2} f_{x_0}| < r$.
- (39) Let m be a non empty element of \mathbb{N} , x, y be elements of \mathbb{R}^m , i be an element of \mathbb{N} , and x_1 be a real number. If $1 \leq i \leq m$ and $y = (\text{reproj}(i, x))(x_1)$, then $(\text{proj}(i, m))(y) = x_1$.
- (40) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R} , x, y be elements of \mathbb{R}^m , i be an element of \mathbb{N} , and x_1 be a real number. If $1 \le i \le m$ and $y = (\text{reproj}(i, x))(x_1)$, then reproj(i, x) = reproj(i, y).
- (41) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R} , g be a partial function from \mathbb{R} to \mathbb{R} , x, y be elements of \mathbb{R}^m , i be an element of \mathbb{N} , and x_1 be a real number. If $1 \leq i \leq m$ and $y = (\text{reproj}(i, x))(x_1)$ and $g = f \cdot \text{reproj}(i, x)$, then $g'(x_1) = \text{partdiff}(f, y, i)$.
- (42) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R} , p, q be real numbers, x be an element of \mathbb{R}^m , and i be an element of \mathbb{N} . Suppose that
 - (i) $1 \le i$,
 - (ii) $i \leq m$,
- (iii) p < q,
- (iv) for every real number h such that $h \in [p,q]$ holds $(\operatorname{reproj}(i,x))(h) \in \operatorname{dom} f$, and

- (v) for every real number h such that $h \in [p, q]$ holds f is partially differentiable in (reproj(i, x))(h) w.r.t. i. Then there exists a real number r and there exists an element y of \mathbb{R}^m such that $r \in [p, q[$ and y = (reproj(i, x))(r) and $f_{(\text{reproj}(i, x))(q)} - f_{(\text{reproj}(i, x))(p)} =$
- (43) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R} , p, q be real numbers, x be an element of \mathbb{R}^m , and i be an element of \mathbb{N} . Suppose that
 - (i) $1 \le i$,

 $(q-p) \cdot \operatorname{partdiff}(f, y, i).$

- (ii) $i \leq m$,
- (iii) $p \leq q$,
- (iv) for every real number h such that $h \in [p,q]$ holds $(\operatorname{reproj}(i,x))(h) \in \operatorname{dom} f$, and
- (v) for every real number h such that $h \in [p,q]$ holds f is partially differentiable in $(\operatorname{reproj}(i,x))(h)$ w.r.t. i.

 Then there exists a real number r and there exists an element y of \mathcal{R}^m such that $r \in [p,q]$ and $y = (\operatorname{reproj}(i,x))(r)$ and $f_{(\operatorname{reproj}(i,x))(q)} f_{(\operatorname{reproj}(i,x))(p)} = (q-p) \cdot \operatorname{partdiff}(f,y,i)$.
- (44) Let m be a non empty element of \mathbb{N} , x, y, z, w be elements of \mathbb{R}^m , i be an element of \mathbb{N} , and d, p, q, r be real numbers. Suppose $1 \le i \le m$ and |y-x| < d and |z-x| < d and $p = (\operatorname{proj}(i,m))(y)$ and $z = (\operatorname{reproj}(i,y))(q)$ and $r \in [p,q]$ and $w = (\operatorname{reproj}(i,y))(r)$. Then |w-x| < d.
- (45) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathcal{R}^m to \mathbb{R} , X be a subset of \mathcal{R}^m , x, y, z be elements of \mathcal{R}^m , i be an element of \mathbb{N} , and d, p, q be real numbers. Suppose that $1 \leq i \leq m$ and X is open and $x \in X$ and |y x| < d and |z x| < d and $X \subseteq \text{dom } f$ and for every element x of \mathcal{R}^m such that $x \in X$ holds f is partially differentiable in x w.r.t. i and 0 < d and for every element z of \mathcal{R}^m such that |z x| < d holds $z \in X$ and z = (reproj(i, y))(p) and q = (proj(i, m))(y). Then there exists an element w of \mathcal{R}^m such that |w x| < d and f is partially differentiable in w w.r.t. i and $f \in \mathcal{R}^m$ such that |x x| < d and $f \in \mathcal{R}^m$ such that |x x| < d and $f \in \mathcal{R}^m$ such that |x x| < d and $f \in \mathcal{R}^m$ such that |x x| < d and $f \in \mathcal{R}^m$ such that |x x| < d and |x x| < d a
- (46) Let m be a non empty element of \mathbb{N} , h be a finite sequence of elements of \mathcal{R}^m , y, x be elements of \mathcal{R}^m , and j be an element of \mathbb{N} . Suppose len h = m+1 and $1 \leq j \leq m$ and for every natural number i such that $i \in \text{dom } h$ holds $h_i = (y \upharpoonright ((m+1)-'i)) \cap \langle \underbrace{0, \ldots, 0}_{i-'1} \rangle$. Then $x + h_j = (\text{reproj}((m+1)-'j, x+h_{j+1}))((\text{proj}((m+1)-'j, m))(x+y))$.
- (47) Let m be a non empty element of \mathbb{N} , f be a partial function from \mathbb{R}^m to \mathbb{R}^1 , X be a subset of \mathbb{R}^m , and x be an element of \mathbb{R}^m . Suppose that
 - (i) X is open,
 - (ii) $x \in X$, and

- (iii) for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \mid^i X$ is continuous on X. Then
- (iv) f is differentiable in x, and
- (v) for every element h of \mathbb{R}^m there exists a finite sequence w of elements of \mathbb{R}^1 such that dom $w = \operatorname{Seg} m$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} m$ holds $w(i) = (\operatorname{proj}(i, m))(h) \cdot \operatorname{partdiff}(f, x, i)$ and $f'(x)(h) = \sum w$.
- (48) Let m be a non empty element of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^1, \| \cdot \| \rangle$, X be a subset of $\langle \mathcal{E}^m, \| \cdot \| \rangle$, and x be a point of $\langle \mathcal{E}^m, \| \cdot \| \rangle$. Suppose that
 - (i) X is open,
 - (ii) $x \in X$, and
- (iii) for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^i X$ is continuous on X. Then
- (iv) f is differentiable in x, and
- (v) for every point h of $\langle \mathcal{E}^m, \| \cdot \| \rangle$ there exists a finite sequence w of elements of \mathcal{R}^1 such that dom $w = \operatorname{Seg} m$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} m$ holds $w(i) = (\operatorname{partdiff}(f, x, i))(\langle (\operatorname{proj}(i, m))(h) \rangle)$ and $f'(x)(h) = \sum w$.
- (49) Let m be a non empty element of \mathbb{N} , f be a partial function from $\langle \mathcal{E}^m, \| \cdot \| \rangle$ to $\langle \mathcal{E}^1, \| \cdot \| \rangle$, and X be a subset of $\langle \mathcal{E}^m, \| \cdot \| \rangle$. Suppose X is open. Then for every element i of \mathbb{N} such that $1 \leq i \leq m$ holds f is partially differentiable on X w.r.t. i and $f \upharpoonright^i X$ is continuous on X if and only if f is differentiable on X and $f' \upharpoonright_X$ is continuous on X.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
- [6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [8] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
- [9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathbb{R}^n . Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-007-0008-5.
- [10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.

- [11] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. *Formalized Mathematics*, 12(3):321–327, 2004.
- [12] Takao Inoué, Noboru Endou, and Yasunari Shidama. Differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 18(4):207–212, 2010, doi: 10.2478/v10037-010-0025-7.
- [13] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [14] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275–278, 1992.
- [15] Yatsuka Nakamura, Artur Korniłowicz, Nagato Oya, and Yasunari Shidama. The real vector spaces of finite sequences are finite dimensional. Formalized Mathematics, 17(1):1– 9, 2009, doi:10.2478/v10037-009-0001-2.
- [16] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [18] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [19] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
- [20] Laurent Schwartz. Cours d'analyse. Hermann, 1981.
- [21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [24] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. *Formalized Mathematics*, 9(3):471–474, 2001.

Received April 22, 2010