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Summary. In [6] it was formalized that the direct product of a family of
groups gives a new group. In this article, we formalize that for all j ∈ I, the
group G = Πi∈IGi has a normal subgroup isomorphic to Gj . Moreover, we show
some relations between a family of groups and its direct product.

MML identifier: GROUP 12, version: 7.11.07 4.156.1112

The papers [2], [4], [5], [3], [8], [9], [7], [10], [11], [6], [1], [13], and [12] provide
the terminology and notation for this paper.

1. Normal Subgroup of Product of Groups

Let I be a non empty set, let F be a group-like multiplicative magma family
of I, and let i be an element of I. Note that F (i) is group-like.

Let I be a non empty set, let F be an associative multiplicative magma
family of I, and let i be an element of I. Observe that F (i) is associative.

Let I be a non empty set, let F be a commutative multiplicative magma
family of I, and let i be an element of I. Note that F (i) is commutative.

In the sequel I is a non empty set, F is an associative group-like multiplica-
tive magma family of I, and i, j are elements of I.

We now state the proposition

(1) Let x be a function and g be an element of F (i). Then domx = I and
x(i) = g and for every element j of I such that j 6= i holds x(j) = 1F (j) if
and only if x = 1∏F +· (i, g).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. The functor ProjSet(F, i) yields
a subset of

∏
F and is defined by:
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(Def. 1) For every set x holds x ∈ ProjSet(F, i) iff there exists an element g of
F (i) such that x = 1∏F +· (i, g).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. Observe that ProjSet(F, i) is
non empty.

Next we state several propositions:

(2) Let x0 be a set. Then x0 ∈ ProjSet(F, i) if and only if there exists a
function x and there exists an element g of F (i) such that x = x0 and
domx = I and x(i) = g and for every element j of I such that j 6= i holds
x(j) = 1F (j).

(3) Let g1, g2 be elements of
∏
F and z1, z2 be elements of F (i). If g1 =

1∏F +· (i, z1) and g2 = 1∏F +· (i, z2), then g1 · g2 = 1∏F +· (i, z1 · z2).

(4) For every element g1 of
∏
F and for every element z1 of F (i) such that

g1 = 1∏F +· (i, z1) holds g1
−1 = 1∏F +· (i, z1

−1).

(5) For all elements g1, g2 of
∏
F such that g1, g2 ∈ ProjSet(F, i) holds

g1 · g2 ∈ ProjSet(F, i).

(6) For every element g of
∏
F such that g ∈ ProjSet(F, i) holds g−1 ∈

ProjSet(F, i).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. The functor ProjGroup(F, i)
yields a strict subgroup of

∏
F and is defined as follows:

(Def. 2) The carrier of ProjGroup(F, i) = ProjSet(F, i).

Let us consider I, F , i. The functor 1ProdHom(F, i) yielding a homomor-
phism from F (i) to ProjGroup(F, i) is defined as follows:

(Def. 3) For every element x of F (i) holds (1ProdHom(F, i))(x) = 1∏F +· (i, x).

Let us consider I, F , i. Note that 1ProdHom(F, i) is bijective.
Let us consider I, F , i. One can check that ProjGroup(F, i) is normal.
One can prove the following proposition

(7) For all elements x, y of
∏
F such that i 6= j and x ∈ ProjGroup(F, i)

and y ∈ ProjGroup(F, j) holds x · y = y · x.

2. Product of Subgroups of a Group

In the sequel n denotes a non empty natural number.
One can prove the following propositions:

(8) Let F be an associative group-like multiplicative magma family of Seg n,
J be a natural number, and G1 be a group. Suppose 1 ≤ J ≤ n and
G1 = F (J). Let x be an element of

∏
F and s be a finite sequence of

elements of
∏
F. Suppose len s < J and for every element k of Seg n
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such that k ∈ dom s holds s(k) ∈ ProjGroup(F, k) and x =
∏
s. Then

x(J) = 1(G1).

(9) Let F be an associative group-like multiplicative magma family of
Seg n, x be an element of

∏
F, and s be a finite sequence of elements

of
∏
F. Suppose len s = n and for every element k of Seg n holds

s(k) ∈ ProjGroup(F, k) and x =
∏
s. Let i be a natural number. Suppose

1 ≤ i ≤ n. Then there exists an element s1 of
∏
F such that s1 = s(i) and

x(i) = s1(i).

(10) Let F be an associative group-like multiplicative magma family of Seg n,
x be an element of

∏
F, and s, t be finite sequences of elements of

∏
F.

Suppose that
(i) len s = n,

(ii) for every element k of Seg n holds s(k) ∈ ProjGroup(F, k),
(iii) x =

∏
s,

(iv) len t = n,

(v) for every element k of Seg n holds t(k) ∈ ProjGroup(F, k), and
(vi) x =

∏
t.

Then s = t.

(11) Let F be an associative group-like multiplicative magma family of Seg n
and x be an element of

∏
F. Then there exists a finite sequence s of

elements of
∏
F such that len s = n and for every element k of Seg n holds

s(k) ∈ ProjGroup(F, k) and x =
∏
s.

(12) Let G be a commutative group and F be an associative group-like mul-
tiplicative magma family of Seg n. Suppose that

(i) for every element i of Seg n holds F (i) is a subgroup of G,
(ii) for every element x of G there exists a finite sequence s of elements of

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and x =

∏
s, and

(iii) for all finite sequences s, t of elements of G such that len s = n and for
every element k of Seg n holds s(k) ∈ F (k) and len t = n and for every
element k of Seg n holds t(k) ∈ F (k) and

∏
s =
∏
t holds s = t.

Then there exists a homomorphism f from
∏
F to G such that

(iv) f is bijective, and
(v) for every element x of

∏
F there exists a finite sequence s of elements of

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and s = x and f(x) =

∏
s.

(13) Let G, F be associative commutative group-like multiplicative magma
families of Seg n. Suppose that for every element k of Seg n holds F (k) =
ProjGroup(G, k). Then there exists a homomorphism f from

∏
F to

∏
G

such that
(i) f is bijective, and
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(ii) for every element x of
∏
F there exists a finite sequence s of elements of∏

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and s = x and f(x) =

∏
s.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized
Mathematics, 5(4):485–492, 1996.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[6] Artur Korniłowicz. The product of the families of the groups. Formalized Mathematics,
7(1):127–134, 1998.

[7] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathema-
tics, 1(5):955–962, 1990.

[8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
[9] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics,

1(5):855–864, 1990.
[10] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized
Mathematics, 2(1):41–47, 1991.

[11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of
groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received July 2, 2010


