The Geometric Interior in Real Linear Spaces

Karol Pąk Institute of Informatics University of Białystok Poland

Summary. We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.

MML identifier: RLAFFIN2, version: 7.11.07 4.156.1112

The papers [1], [6], [11], [2], [5], [3], [4], [13], [7], [16], [10], [14], [12], [8], [9], and [15] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x denotes a set, r, s denote real numbers, n denotes a natural number, V denotes a real linear space, v, u, w, p denote vectors of V, A, B denote subsets of V, A_1 denotes a finite subset of V, I denotes an affinely independent subset of V, I_1 denotes a finite affinely independent subset of V, F denotes a family of subsets of V, and L_1 , L_2 denote linear combinations of V.

Next we state four propositions:

- (1) Let *L* be a linear combination of *A*. Suppose *L* is convex and $v \neq \sum L$ and $L(v) \neq 0$. Then there exists *p* such that $p \in \operatorname{conv} A \setminus \{v\}$ and $\sum L = L(v) \cdot v + (1 L(v)) \cdot p$ and $\frac{1}{L(v)} \cdot \sum L + (1 \frac{1}{L(v)}) \cdot p = v$.
- (2) Let p_1, p_2, w_1, w_2 be elements of V. Suppose that $v, u \in \operatorname{conv} I$ and $u \notin \operatorname{conv} I \setminus \{p_1\}$ and $u \notin \operatorname{conv} I \setminus \{p_2\}$ and $w_1 \in \operatorname{conv} I \setminus \{p_1\}$ and

C 2010 University of Białystok ISSN 1426-2630(p), 1898-9934(e) $w_2 \in \operatorname{conv} I \setminus \{p_2\}$ and $r \cdot u + (1 - r) \cdot w_1 = v$ and $s \cdot u + (1 - s) \cdot w_2 = v$ and r < 1 and s < 1. Then $w_1 = w_2$ and r = s.

- (3) Let L be a linear combination of A_1 . Suppose $A_1 \subseteq \text{conv } I_1$ and sum L = 1. Then
- (i) $\sum L \in \operatorname{Affin} I_1$, and
- (ii) for every element x of V there exists a finite sequence F of elements of \mathbb{R} and there exists a finite sequence G of elements of V such that $(\sum L \to I_1)(x) = \sum F$ and len G = len F and G is one-to-one and rng G =the support of L and for every n such that $n \in \text{dom } F$ holds F(n) = $L(G(n)) \cdot (G(n) \to I_1)(x).$
- (4) For every subset A_2 of V such that A_2 is affine and $\operatorname{conv} A \cap \operatorname{conv} B \subseteq A_2$ and $\operatorname{conv} A \setminus \{v\} \subseteq A_2$ and $v \notin A_2$ holds $\operatorname{conv} A \setminus \{v\} \cap \operatorname{conv} B = \operatorname{conv} A \cap \operatorname{conv} B$.

2. The Geometric Interior

Let V be a non empty RLS structure and let A be a subset of V. The functor Int A yields a subset of V and is defined by:

(Def. 1) $x \in \text{Int } A \text{ iff } x \in \text{conv } A \text{ and it is not true that there exists a subset } B \text{ of } V \text{ such that } B \subset A \text{ and } x \in \text{conv } B.$

Let V be a non empty RLS structure and let A be an empty subset of V. Observe that Int A is empty.

We now state a number of propositions:

- (5) For every non empty RLS structure V and for every subset A of V holds Int $A \subseteq \text{conv } A$.
- (6) Let V be a real linear space-like non empty RLS structure and A be a subset of V. Then Int A = A if and only if A is trivial.
- (7) If $A \subset B$, then conv A misses Int B.
- (8) $\operatorname{conv} A = \bigcup \{\operatorname{Int} B : B \subseteq A\}.$
- (9) $\operatorname{conv} A = \operatorname{Int} A \cup \bigcup \{\operatorname{conv} A \setminus \{v\} : v \in A\}.$
- (10) If $x \in \text{Int } A$, then there exists a linear combination L of A such that L is convex and $x = \sum L$.
- (11) For every linear combination L of A such that L is convex and $\sum L \in$ Int A holds the support of L = A.
- (12) For every linear combination L of I such that L is convex and the support of L = I holds $\sum L \in \text{Int } I$.
- (13) If Int A is non empty, then A is finite.
- (14) If $v \in I$ and $u \in \operatorname{Int} I$ and $p \in \operatorname{conv} I \setminus \{v\}$ and $r \cdot v + (1 r) \cdot p = u$, then $p \in \operatorname{Int}(I \setminus \{v\})$.

3. The Center of Mass

Let us consider V. The center of mass of V yielding a function from $2^{\text{the carrier of }V}_+$ into the carrier of V is defined by the conditions (Def. 2).

- (Def. 2)(i) For every non empty finite subset A of V holds (the center of mass of V)(A) = $\frac{1}{\overline{A}} \cdot \sum A$, and
 - (ii) for every A such that A is infinite holds (the center of mass of V) $(A) = 0_V$.

One can prove the following propositions:

- (15) There exists a linear combination L of A_1 such that $\sum L = r \cdot \sum A_1$ and sum $L = r \cdot \overline{A_1}$ and $L = \mathbf{0}_{\mathrm{LC}_V} + (A_1 \longmapsto r)$.
- (16) If A_1 is non empty, then (the center of mass of V) $(A_1) \in \operatorname{conv} A_1$.
- (17) If $\bigcup F$ is finite, then (the center of mass of V)[°] $F \subseteq \operatorname{conv} \bigcup F$.
- (18) If $v \in I_1$, then ((the center of mass of V) $(I_1) \to I_1$) $(v) = \frac{1}{\overline{I_1}}$.
- (19) (The center of mass of V) $(I_1) \in I_1$ iff $\overline{\overline{I_1}} = 1$.
- (20) If I_1 is non empty, then (the center of mass of V) $(I_1) \in \text{Int } I_1$.
- (21) If $A \subseteq I_1$ and (the center of mass of V) $(I_1) \in Affin A$, then $I_1 = A$.
- (22) If $v \in A_1$ and $A_1 \setminus \{v\}$ is non empty, then (the center of mass of V) $(A_1) = (1 \frac{1}{\overline{A_1}}) \cdot (\text{the center of mass of } V)_{A_1 \setminus \{v\}} + \frac{1}{\overline{A_1}} \cdot v.$
- (23) If conv $A \subseteq \operatorname{conv} I_1$ and I_1 is non empty and conv A misses Int I_1 , then there exists a subset B of V such that $B \subset I_1$ and conv $A \subseteq \operatorname{conv} B$.
- (24) If $\sum L_1 \neq \sum L_2$ and sum $L_1 = \text{sum } L_2$, then there exists v such that $L_1(v) > L_2(v)$.
- (25) Let p be a real number. Suppose $(r \cdot L_1 + (1-r) \cdot L_2)(v) \le p \le (s \cdot L_1 + (1-s) \cdot L_2)(v)$. Then there exists a real number r_1 such that $(r_1 \cdot L_1 + (1-r_1) \cdot L_2)(v) = p$ and if $r \le s$, then $r \le r_1 \le s$ and if $s \le r$, then $s \le r_1 \le r$.
- (26) If $v, u \in \operatorname{conv} A$ and $v \neq u$, then there exist p, w, r such that $p \in A$ and $w \in \operatorname{conv} A \setminus \{p\}$ and $0 \leq r < 1$ and $r \cdot u + (1 r) \cdot w = v$.
- (27) $A \cup \{v\}$ is affinely independent iff A is affinely independent but $v \in A$ or $v \notin A$ ffin A.
- (28) If $A_1 \subseteq I$ and $v \in A_1$, then $(I \setminus \{v\}) \cup \{(\text{the center of mass of } V)(A_1)\}$ is an affinely independent subset of V.
- (29) Let F be a \subseteq -linear family of subsets of V. Suppose $\bigcup F$ is finite and affinely independent. Then (the center of mass of V)°F is an affinely independent subset of V.
- (30) Let F be a \subseteq -linear family of subsets of V. Suppose $\bigcup F$ is affinely independent and finite. Then $\operatorname{Int}((\text{the center of mass of } V)^{\circ}F) \subseteq \operatorname{Int} \bigcup F$.

KAROL PĄK

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite [2]sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990. [5]
- [6]Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.
- [7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
- [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- [10] Karol Pak. Affine independence in vector spaces. Formalized Mathematics, 18(1):87–93, 2010, doi: 10.2478/v10037-010-0012-z.
- [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [12] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.
- [13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313–319, 1990.
 [14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
- 1990. Zinaida Trybulec. Properties of subsets. *Formalized Mathematics*, 1(1):67–71, 1990.
- [15]
- [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received February 9, 2010