Second-Order Partial Differentiation of Real Ternary Functions

Takao Inoué
Inaba 2205, Wing-Minamikan
Nagano, Nagano, Japan

Abstract

Summary. In this article, we shall extend the result of [17] to discuss second-order partial differentiation of real ternary functions (refer to [7] and [14] for partial differentiation).

MML identifier: PDIFF_5, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following papers: [6], [11], [12], [1], [2], [3], [4], [5], [7], [16], [17], [13], [8], [15], [10], and [9].

1. Second-order Partial Derivatives

For simplicity, we use the following convention: $x, x_{0}, y, y_{0}, z, z_{0}, r$ denote real numbers, u, u_{0} denote elements of $\mathcal{R}^{3}, f, f_{1}, f_{2}$ denote partial functions from \mathcal{R}^{3} to \mathbb{R}, R denotes a rest, and L denotes a linear function.

Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. We say that f is partial differentiable on 1st-1st coordinate in u if and only if the condition (Def. 1) is satisfied.
(Def. 1) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF1}(1, \operatorname{pdiff1}(f, 1), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

We say that f is partial differentiable on 1 st- 2 nd coordinate in u if and only if the condition (Def. 2) is satisfied.
(Def. 2) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ domSVF1 $(2, \operatorname{pdiff} 1(f, 1), u)$ and there exist $L, \quad R$ such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 1 st-3rd coordinate in u if and only if the condition (Def. 3) is satisfied.
(Def. 3) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 1), u)$ and there exist $L, \quad R$ such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
We say that f is partial differentiable on 2 nd-1st coordinate in u if and only if the condition (Def. 4) is satisfied.
(Def. 4) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 1 (1, $\operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 2 nd- 2 nd coordinate in u if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 2 nd-3rd coordinate in u if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3$, $\operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.

We say that f is partial differentiable on 3rd-1st coordinate in u if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1(1, $\operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 3rd-2nd coordinate in u if and only if the condition (Def. 8) is satisfied.
(Def. 8) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 3rd-3rd coordinate in u if and only if the condition (Def. 9) is satisfied.
(Def. 9) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-1st coordinate in u. The functor hpartdiff11 (f, u) yielding a real number is defined by the condition (Def. 10).
(Def. 10) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff11 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-2nd coordinate in u. The functor hpartdiff12 (f, u) yielding a real number is defined by the condition (Def. 11).
(Def. 11) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff12 $(f, u)=$
$L(1)$ and for every y such that $y \in N$ holds (SVF1 $(2, \operatorname{pdiff} 1(f, 1), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-3rd coordinate in u. The functor hpartdiff13 (f, u) yielding a real number is defined by the condition (Def. 12).
(Def. 12) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff13 $(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1 $(3, \operatorname{pdiff} 1(f, 1), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate in u. The functor hpartdiff $21(f, u)$ yielding a real number is defined by the condition (Def. 13).
(Def. 13) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 (1, pdiff1 $(f, 2), u)$ and there exist L, R such that hpartdiff21 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd-2nd coordinate in u. The functor hpartdiff $22(f, u)$ yielding a real number is defined by the condition (Def. 14).
(Def. 14) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 2), u)$ and there exist L, R such that hpartdiff22 $(f, u)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF1 $(2, \operatorname{pdiff} 1(f, 2), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd-3rd coordinate in u. The functor hpartdiff $23(f, u)$ yielding a real number is defined by the condition (Def. 15).
(Def. 15) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 2), u)$ and there exist L, R such that $\operatorname{hpartdiff} 23(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1 $(3, \operatorname{pdiff} 1(f, 2), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3 rd-1st coordinate in u. The functor
hpartdiff31 (f, u) yields a real number and is defined by the condition (Def. 16).
(Def. 16) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that hpartdiff31 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds (SVF1(1, pdiff1 $(f, 3), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3rd-2nd coordinate in u. The functor hpartdiff32 (f, u) yielding a real number is defined by the condition (Def. 17).
(Def. 17) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff1}(f, 3), u)$ and there exist L, R such that hpartdiff32 $(f, u)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF1(2, pdiff1 $(f, 3), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3rd-3rd coordinate in u. The functor hpartdiff33($f, u)$ yielding a real number is defined by the condition (Def. 18).
(Def. 18) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that hpartdiff33 $(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1(3, pdiff1 $(f, 3), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Next we state a number of propositions:
(1) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u)$ is differentiable in x_{0}.
(2) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff1}(f, 1), u)$ is differentiable in y_{0}.
(3) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u)$ is differentiable in z_{0}.
(4) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff1}(f, 2), u)$ is differentiable in x_{0}.
(5) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u)$ is differentiable in y_{0}.
(6) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u)$ is differentiable in z_{0}.
(7) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in x_{0}.
(8) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in y_{0}.
(9) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in z_{0}.
(10) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in u, then hpartdiff11 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))^{\prime}\left(x_{0}\right)$.
(11) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in u, then hpartdiff12 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff1}(f, 1), u))^{\prime}\left(y_{0}\right)$.
(12) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-3rd coordinate in u, then hpartdiff13 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))^{\prime}\left(z_{0}\right)$.
(13) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in u, then hpartdiff21 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(x_{0}\right)$.
(14) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in u, then hpartdiff22 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(y_{0}\right)$.
(15) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-3rd coordinate in u, then hpartdiff23 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(z_{0}\right)$.
(16) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-1st coordinate in u, then hpartdiff31 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(x_{0}\right)$.
(17) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-2nd coordinate in u, then hpartdiff32 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(y_{0}\right)$.
(18) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-3rd coordinate in u, then hpartdiff33 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. We say that f is partial differentiable on 1st-1st coordinate on D if and only if:
(Def. 19) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 1st-1st coordinate in u.
We say that f is partial differentiable on 1st-2nd coordinate on D if and only if: (Def. 20) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \backslash D$ is partial differentiable on 1st-2nd coordinate in u.
We say that f is partial differentiable on 1st-3rd coordinate on D if and only if: (Def. 21) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \backslash D$ is partial differentiable on 1st-3rd coordinate in u.
We say that f is partial differentiable on 2 nd-1st coordinate on D if and only if: (Def. 22) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 2nd-1st coordinate in u.
We say that f is partial differentiable on 2 nd-2nd coordinate on D if and only if:
(Def. 23) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 2nd-2nd coordinate in u.
We say that f is partial differentiable on 2 nd- 3 rd coordinate on D if and only if:
(Def. 24) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 2 nd-3rd coordinate in u.
We say that f is partial differentiable on 3 rd- 1 st coordinate on D if and only if:
(Def. 25) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 3 rd-1st coordinate in u.
We say that f is partial differentiable on 3 rd- 2 nd coordinate on D if and only if:
(Def. 26) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on $3 \mathrm{rd}-2 \mathrm{nd}$ coordinate in u.
We say that f is partial differentiable on 3 rd- 3 rd coordinate on D if and only if:
(Def. 27) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 3 rd-3rd coordinate in u.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 1 st coordinate on D. The functor $f_{\mid D}^{1 \text { st-1st }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 28) $\operatorname{dom}\left(f_{\upharpoonright D}^{1 \text { st-1st }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\Gamma D}^{1 \text { st-1st }}(u)=\operatorname{hpartdiff11}(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 2 nd coordinate on D. The functor $f_{\upharpoonright D}^{1 \text { st- } 2 \text { nd }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined by:
(Def. 29) $\operatorname{dom}\left(f_{\upharpoonright D}^{1 \text { st-2nd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{1 \text { st-2nd }}(u)=\operatorname{hpartdiff12}(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 3 rd coordinate on D. The functor $f_{\lceil D}^{1 \text { st }-3 \mathrm{rd}}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 30) $\operatorname{dom}\left(f_{\mid D}^{1 \text { st-3rd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\mid D}^{1 \mathrm{st}-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 13(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate on D. The functor $f_{\lceil D}^{2 \text { nd }-1 \text { st }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined as follows:
(Def. 31) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd }-1 \text { st }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{2 \text { nd-1st }}(u)=\operatorname{hpartdiff} 21(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd- 2 nd coordinate on D. The functor $f_{\upharpoonright D}^{2 \text { nd }-2 \text { nd }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 32) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd-2nd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\mid D}^{2 \text { nd-2nd }}(u)=\operatorname{hpartdiff} 22(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd-3rd coordinate on D. The functor $f_{\uparrow D}^{2 \text { nd }-3 \text { rd }}$
yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 33) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd }-3 \mathrm{rd}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\uparrow D}^{2 \text { nd }-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 23(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd- 1 st coordinate on D. The functor $f_{\lceil D}^{3 \mathrm{rd}-1 \mathrm{st}}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined as follows:
(Def. 34) $\operatorname{dom}\left(f_{\upharpoonright D}^{3 \mathrm{rd}-1 \mathrm{st}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{3 \mathrm{rd}-1 \mathrm{st}}(u)=\operatorname{hpartdiff} 31(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd- 2 nd coordinate on D. The functor $f_{\uparrow D}^{3 \text { rd-2nd }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 35) $\operatorname{dom}\left(f_{\uparrow D}^{3 \mathrm{rd}-2 \mathrm{nd}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\Gamma D}^{3 \mathrm{rd}-2 \mathrm{nd}}(u)=\operatorname{hpartdiff} 32(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd-3rd coordinate on D. The functor $f_{\upharpoonright D}^{3 \mathrm{rd}-3 \mathrm{rd}}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined by:
(Def. 36) $\operatorname{dom}\left(f_{\mid D}^{3 \text { rd-3rd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\lceil D}^{3 \mathrm{rd}-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 33(f, u)$.

2. Main Properties of Second-order Partial Derivatives

Next we state a number of propositions:
(19) f is partial differentiable on 1 st-1st coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 1 .
(20) f is partial differentiable on 1st-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 2 .
(21) f is partial differentiable on 1st-3rd coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 3 .
(22) f is partial differentiable on 2 nd- 1 st coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 1 .
(23) f is partial differentiable on 2 nd-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 2.
(24) f is partial differentiable on 2nd-3rd coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 3 .
(25) f is partial differentiable on 3rd-1st coordinate in u if and only if pdiff $1(f, 3)$ is partially differentiable in u w.r.t. 1 .
(26) f is partial differentiable on 3rd-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 3)$ is partially differentiable in u w.r.t. 2 .
(27) f is partial differentiable on 3rd-3rd coordinate in u if and only if pdiff $1(f, 3)$ is partially differentiable in u w.r.t. 3 .
(28) If f is partial differentiable on 1st-1st coordinate in u, then $\operatorname{hpartdiff} 11(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 1)$.
(29) If f is partial differentiable on 1 st-2nd coordinate in u, then $\operatorname{hpartdiff} 12(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 2)$.
(30) If f is partial differentiable on 1st-3rd coordinate in u, then $\operatorname{hpartdiff} 13(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 3)$.
(31) If f is partial differentiable on 2 nd-1st coordinate in u, then $\operatorname{hpartdiff} 21(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 1)$.
(32) If f is partial differentiable on 2 nd-2nd coordinate in u, then $\operatorname{hpartdiff} 22(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 2)$.
(33) If f is partial differentiable on 2 nd-3rd coordinate in u, then $\operatorname{hpartdiff} 23(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 3)$.
(34) If f is partial differentiable on 3rd-1st coordinate in u, then $\operatorname{hpartdiff} 31(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 1)$.
(35) If f is partial differentiable on 3 rd-2nd coordinate in u, then hpartdiff $32(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 2)$.
(36) If f is partial differentiable on 3rd-3rd coordinate in u, then $\operatorname{hpartdiff} 33(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 3)$.
(37) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and $\operatorname{hpartdiff11}\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(38) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-2nd coordinate in u_{0} and $N \subseteq \operatorname{domSVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff12 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(39) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-3rd coordinate in u_{0} and $N \subseteq \operatorname{domSVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real num-
bers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff13 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(40) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff21 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(41) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff22 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(42) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff23 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(43) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3 rd-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff31 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(44) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3rd-2nd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then
$h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff $32\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff}(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(45) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3rd-3rd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff33 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(46) Suppose that
(i) f_{1} is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 1\right)+\operatorname{pdiff}\left(f_{2}, 1\right), u_{0}, 1\right)=\operatorname{hpartdiff11}\left(f_{1}, u_{0}\right)+$ hpartdiff11 $\left(f_{2}, u_{0}\right)$.
(47) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-2nd coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1 st-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff(pdiff1 $\left.\left(f_{1}, 1\right)+\operatorname{pdiff}\left(f_{2}, 1\right), u_{0}, 2\right)=\operatorname{hpartdiff12}\left(f_{1}, u_{0}\right)+$ hpartdiff12 $\left(f_{2}, u_{0}\right)$.
(48) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(\operatorname{pdiff1}\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 3\right)=\operatorname{hpartdiff13}\left(f_{1}, u_{0}\right)+$ hpartdiff13 $\left(f_{2}, u_{0}\right)$.
(49) Suppose that
(i) f_{1} is partial differentiable on 2nd-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 2nd-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right), u_{0}, 1\right)=\operatorname{hpartdiff} 21\left(f_{1}, u_{0}\right)+$ hpartdiff21 $\left(f_{2}, u_{0}\right)$.
(50) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2nd-2nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right), u_{0}, 2\right)=\operatorname{hpartdiff} 22\left(f_{1}, u_{0}\right)+$ hpartdiff22 $\left(f_{2}, u_{0}\right)$.
(51) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2nd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 and partdiff $\left(\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 3\right)=\operatorname{hpartdiff} 23\left(f_{1}, u_{0}\right)+$ $\operatorname{hpartdiff} 23\left(f_{2}, u_{0}\right)$.
(52) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 1\right)=\operatorname{hpartdiff} 11\left(f_{1}, u_{0}\right)-$ $\operatorname{hpartdiff11}\left(f_{2}, u_{0}\right)$.
(53) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1 st- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 2\right)=\operatorname{hpartdiff} 12\left(f_{1}, u_{0}\right)-$ hpartdiff12 $\left(f_{2}, u_{0}\right)$.
(54) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 3\right)=\operatorname{hpartdiff} 13\left(f_{1}, u_{0}\right)-$ hpartdiff13 $\left(f_{2}, u_{0}\right)$.
(55) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 1\right)=\operatorname{hpartdiff} 21\left(f_{1}, u_{0}\right)-$ $\operatorname{hpartdiff21}\left(f_{2}, u_{0}\right)$.
(56) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff($\left.\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 2\right)=\operatorname{hpartdiff} 22\left(f_{1}, u_{0}\right)-$ hpartdiff22 $\left(f_{2}, u_{0}\right)$.
(57) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2nd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 and partdiff($\left.\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 3\right)=\operatorname{hpartdiff} 23\left(f_{1}, u_{0}\right)-$
$\operatorname{hpartdiff} 23\left(f_{2}, u_{0}\right)$.
(58) Suppose f is partial differentiable on 1st-1st coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 1)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 1), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff11}\left(f, u_{0}\right)$.
(59) Suppose f is partial differentiable on 1 st-2nd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 1)$ is partially differentiable in u_{0} w.r.t. 2 and $\left.\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 1), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff12(} f, u_{0}\right)$.
(60) Suppose f is partial differentiable on 1st-3rd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 1)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 1), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff13}\left(f, u_{0}\right)$.
(61) Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 2)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 2), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff21}\left(f, u_{0}\right)$.
(62) Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 2)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 2), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff22(f,u_{0})}$.
(63) Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 2)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff}(f, 2), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff23(f,u_{0}).}$
(64) Suppose f is partial differentiable on 3rd-1st coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 3)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff3} 3\left(f, u_{0}\right)$.
(65) Suppose f is partial differentiable on 3rd-2nd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 3)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff32(f,u_{0})\text {.}}$
(66) Suppose f is partial differentiable on 3rd-3rd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 3)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff33}\left(f, u_{0}\right)$.
(67) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff1}\left(f_{1}, 1\right) \operatorname{pdiff}\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(68) Suppose that
(i) f_{1} is partial differentiable on 1st-2nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right) \operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(69) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right) \operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(70) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(71) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(72) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-3rd coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(73) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3 rd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3 rd-1st coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(74) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3 rd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3rd-2nd coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(75) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3rd-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3 rd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(76) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(77) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(78) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in (proj$(3,3))\left(u_{0}\right)$.
(79) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(80) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(81) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(3,3))\left(u_{0}\right)$.
(82) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3rd-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(83) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3 rd-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(84) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3 rd-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(3,3))\left(u_{0}\right)$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[16] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.
[17] Bing Xie, Xiquan Liang, and Xiuzhuan Shen. Second-order partial differentiation of real binary functions. Formalized Mathematics, 17(2):79-87, 2009, doi: 10.2478/v10037-009-0009-7.

