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Summary. In this article we define the notion of abstract simplicial com-
plexes and operations on them. We introduce the following basic notions: simplex,
face, vertex, degree, skeleton, subdivision and substructure, and prove some of
their properties.

MML identifier: SIMPLEX0, version: 7.11.0 4.1 .10

The articles [2], [5], [6], [10], [8], [14], [1], [7], [3], [4], [11], [13], [16], [12], [15],
and [9] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, y, X, Y , Z are sets, D
is a non empty set, n, k are natural numbers, and i, i1, i2 are integers.

Let us consider X. We introduce X has empty element as an antonym of X
has non empty elements.

Note that there exists a set which is empty and finite-membered and every
set which is empty is also finite-membered. Let X be a finite set. Note that {X}
is finite-membered and 2X is finite-membered. Let Y be a finite set. Observe
that {X,Y } is finite-membered.

Let X be a finite-membered set. Observe that every subset of X is finite-
membered. Let Y be a finite-membered set. One can check that X ∪Y is finite-
membered.

Let X be a finite finite-membered set. Note that
⋃
X is finite.

One can verify the following observations:

∗ every set which is empty is also subset-closed,
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∗ every set which has empty element is also non empty,

∗ every set which is non empty and subset-closed has also empty element,
and

∗ there exists a set which has empty element.

Let us considerX. Observe that SubFin(X) is finite-membered and there exi-
sts a family of subsets of X which is subset-closed, finite, and finite-membered.

Let X be a subset-closed set. One can check that SubFin(X) is subset-closed.
Next we state the proposition

(1) Y is subset-closed iff for every X such that X ∈ Y holds 2X ⊆ Y.
Let A, B be subset-closed sets. Note that A ∪B is subset-closed and A ∩B

is subset-closed.
Let us consider X. The subset-closure of X yields a subset-closed set and is

defined by the conditions (Def. 1).

(Def. 1)(i) X ⊆ the subset-closure of X, and
(ii) for every Y such that X ⊆ Y and Y is subset-closed holds the subset-

closure of X ⊆ Y.
The following proposition is true

(2) x ∈ the subset-closure of X iff there exists y such that x ⊆ y and y ∈ X.
Let us consider X and let F be a family of subsets of X. Then the subset-

closure of F is a subset-closed family of subsets of X.
Observe that the subset-closure of ∅ is empty. Let X be a non empty set.

Note that the subset-closure of X is non empty.
Let X be a set with a non-empty element. One can check that the subset-

closure of X has a non-empty element.
Let X be a finite-membered set. Note that the subset-closure of X is finite-

membered.
The following propositions are true:

(3) If X ⊆ Y and Y is subset-closed, then the subset-closure of X ⊆ Y.
(4) The subset-closure of {X} = 2X .

(5) The subset-closure of X ∪ Y = (the subset-closure of X) ∪ (the subset-
closure of Y ).

(6) X is finer than Y iff the subset-closure of X ⊆ the subset-closure of Y .

(7) If X is subset-closed, then the subset-closure of X = X.

(8) If the subset-closure of X ⊆ X, then X is subset-closed.

Let us consider Y , X and let n be a set. The subsets of X and Y with
cardinality limited by n yields a family of subsets of Y and is defined by the
condition (Def. 2).

(Def. 2) Let A be a subset of Y . Then A ∈ the subsets ofX and Y with cardinality
limited by n if and only if A ∈ X and CardA ⊆ Cardn.
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Let us consider D. One can verify that there exists a family of subsets of D
which is finite, subset-closed, and finite-membered and has a non-empty element.

Let us consider Y , X and let n be a finite set. One can check that the subsets
of X and Y with cardinality limited by n is finite-membered.

Let us consider Y , let X be a subset-closed set, and let n be a set. Note that
the subsets of X and Y with cardinality limited by n is subset-closed.

Let us consider Y , let X be a set with empty element, and let n be a set.
One can check that the subsets of X and Y with cardinality limited by n has
empty element.

Let us consider D, let X be a subset-closed family of subsets of D with a
non-empty element, and let n be a non empty set. Note that the subsets of X
and D with cardinality limited by n has a non-empty element.

Let us consider X, let Y be a family of subsets of X, and let n be a set. We
introduce the subsets of Y with cardinality limited by n as a synonym of the
subsets of Y and X with cardinality limited by n.

Let us observe that every set which is empty is also ⊆-linear and there exists
a set which is empty and ⊆-linear.

Let X be a ⊆-linear set. Note that every subset of X is ⊆-linear.
The following propositions are true:

(9) If X is non empty, finite, and ⊆-linear, then
⋃
X ∈ X.

(10) For every finite ⊆-linear set X such that X has non empty elements
holds CardX ⊆ Card

⋃
X.

(11) If X is ⊆-linear and
⋃
X misses x, then X ∪ {

⋃
X ∪ x} is ⊆-linear.

(12) Let X be a non empty set. Then there exists a family Y of subsets of X
such that

(i) Y is ⊆-linear and has non empty elements,
(ii) X ∈ Y,
(iii) CardX = CardY, and
(iv) for every Z such that Z ∈ Y and CardZ 6= 1 there exists x such that

x ∈ Z and Z \ {x} ∈ Y.
(13) Let Y be a family of subsets of X. Suppose Y is finite and ⊆-linear and

has non empty elements and X ∈ Y. Then there exists a family Y ′ of
subsets of X such that

(i) Y ⊆ Y ′,
(ii) Y ′ is ⊆-linear and has non empty elements,
(iii) CardX = CardY ′, and
(iv) for every Z such that Z ∈ Y ′ and CardZ 6= 1 there exists x such that

x ∈ Z and Z \ {x} ∈ Y ′.
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2. Simplicial Complexes

A simplicial complex structure is a topological structure.
In the sequel K denotes a simplicial complex structure.
Let us consider K and let A be a subset of K. We introduce A is simplex-like

as a synonym of A is open.
Let us consider K and let S be a family of subsets of K. We introduce S is

simplex-like as a synonym of S is open.
Let us consider K. One can check that there exists a family of subsets of K

which is empty and simplex-like.
The following proposition is true

(14) For every family S of subsets of K holds S is simplex-like iff S ⊆ the
topology of K.

Let us consider K and let v be an element of K. We say that v is vertex-like
if and only if:

(Def. 3) There exists a subset S of K such that S is simplex-like and v ∈ S.
Let us consider K. The functor VerticesK yielding a subset of K is defined

by:

(Def. 4) For every element v of K holds v ∈ VerticesK iff v is vertex-like.

Let K be a simplicial complex structure. A vertex of K is an element of
VerticesK.

Let K be a simplicial complex structure. We say that K is finite-vertices if
and only if:

(Def. 5) VerticesK is finite.

Let us consider K. We say that K is locally-finite if and only if:

(Def. 6) For every vertex v of K holds {S ⊆ K: S is simplex-like ∧ v ∈ S} is
finite.

Let us consider K. We say that K is empty-membered if and only if:

(Def. 7) The topology of K is empty-membered.

We say that K has non empty elements if and only if:

(Def. 8) The topology of K has non empty elements.

Let us consider K. We introduce K has a non-empty element as an antonym
of K is empty-membered. We introduce K has empty element as an antonym
of K has non empty elements.

Let us consider X. A simplicial complex structure is said to be a simplicial
complex structure of X if:

(Def. 9) Ωit ⊆ X.
Let us consider X and let K1 be a simplicial complex structure of X. We

say that K1 is total if and only if:
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(Def. 10) Ω(K1) = X.

One can check the following observations:

∗ every simplicial complex structure which has empty element is also non
void,

∗ every simplicial complex structure which has a non-empty element is
also non void,

∗ every simplicial complex structure which is non void and empty-membered
has also empty element,

∗ every simplicial complex structure which is non void and subset-closed
has also empty element,

∗ every simplicial complex structure which is empty-membered is also
subset-closed and finite-vertices,

∗ every simplicial complex structure which is finite-vertices is also locally-
finite and finite-degree, and

∗ every simplicial complex structure which is locally-finite and subset-
closed is also finite-membered.

Let us consider X. Observe that there exists a simplicial complex structure
of X which is empty, void, empty-membered, and strict.

Let us consider D. Note that there exists a simplicial complex structure of D
which is non empty, non void, total, empty-membered, and strict and there exists
a simplicial complex structure of D which is non empty, total, finite-vertices,
subset-closed, and strict and has empty element and a non-empty element.

Let us observe that there exists a simplicial complex structure which is non
empty, finite-vertices, subset-closed, and strict and has empty element and a
non-empty element.

Let K be a simplicial complex structure with a non-empty element. Observe
that VerticesK is non empty.

Let K be a finite-vertices simplicial complex structure. Note that every fa-
mily of subsets of K which is simplex-like is also finite.

Let K be a finite-membered simplicial complex structure. Note that every
family of subsets of K which is simplex-like is also finite-membered.

Next we state several propositions:

(15) VerticesK is empty iff K is empty-membered.

(16) VerticesK =
⋃

(the topology of K).

(17) For every subset S of K such that S is simplex-like holds S ⊆ VerticesK.

(18) If K is finite-vertices, then the topology of K is finite.

(19) If the topology of K is finite and K is non finite-vertices, then K is non
finite-membered.

(20) If K is subset-closed and the topology of K is finite, then K is finite-
vertices.
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3. The Simplicial Complex Generated on the Set

Let us consider X and let Y be a family of subsets of X. The complex of Y
yielding a strict simplicial complex structure of X is defined as follows:

(Def. 11) The complex of Y = 〈X, the subset-closure of Y 〉.
Let us consider X and let Y be a family of subsets of X. One can verify that

the complex of Y is total and subset-closed.
Let us consider X and let Y be a non empty family of subsets of X. Note

that the complex of Y has empty element.
Let us consider X and let Y be a finite-membered family of subsets of X.

Note that the complex of Y is finite-membered.
Let us consider X and let Y be a finite finite-membered family of subsets of

X. Observe that the complex of Y is finite-vertices.
One can prove the following proposition

(21) If K is subset-closed, then the topological structure of K = the complex
of the topology of K.

Let us consider X. A simplicial complex of X is a finite-membered subset-
closed simplicial complex structure of X.

Let K be a non void simplicial complex structure. A simplex of K is a
simplex-like subset of K.

Let K be a simplicial complex structure with empty element. One can check
that every subset of K which is empty is also simplex-like and there exists a
simplex of K which is empty.

Let K be a non void finite-membered simplicial complex structure. Note
that there exists a simplex of K which is finite.

4. The Degree of Simplicial Complexes

Let us consider K. The functor degree(K) yields an extended real number
and is defined as follows:

(Def. 12)(i) For every finite subset S of K such that S is simplex-like holds S ≤
degree(K) + 1 and there exists a subset S of K such that S is simplex-like
and CardS = degree(K) + 1 if K is non void and finite-degree,

(ii) degree(K) = −1 if K is void,
(iii) degree(K) = +∞, otherwise.

Let K be a finite-degree simplicial complex structure. Note that degree(K)+
1 is natural and degree(K) is integer.

The following propositions are true:

(22) degree(K) = −1 iff K is empty-membered.

(23) −1 ≤ degree(K).
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(24) For every finite subset S of K such that S is simplex-like holds S ≤
degree(K) + 1.

(25) Suppose K is non void or i ≥ −1. Then degree(K) ≤ i if and only if the
following conditions are satisfied:

(i) K is finite-membered, and
(ii) for every finite subset S of K such that S is simplex-like holds S ≤ i+1.

(26) For every finite subset A of X holds degree(the complex of {A}) = A−1.

5. Subcomplexes

Let us consider X and let K1 be a simplicial complex structure of X. A
simplicial complex of X is said to be a subsimplicial complex of K1 if:

(Def. 13) Ωit ⊆ Ω(K1) and the topology of it ⊆ the topology of K1.

In the sequel K1 denotes a simplicial complex structure of X and S1 denotes
a subsimplicial complex of K1.

Let us consider X, K1. One can check that there exists a subsimplicial
complex of K1 which is empty, void, and strict.

Let us consider X and let K1 be a void simplicial complex structure of X.
Observe that every subsimplicial complex of K1 is void.

Let us consider D and let K2 be a non void subset-closed simplicial complex
structure of D. Note that there exists a subsimplicial complex of K2 which is
non void.

Let us consider X and let K1 be a finite-vertices simplicial complex structure
of X. One can check that every subsimplicial complex of K1 is finite-vertices.

Let us consider X and let K1 be a finite-degree simplicial complex structure
of X. Note that every subsimplicial complex of K1 is finite-degree.

Next we state several propositions:

(27) Every subsimplicial complex of S1 is a subsimplicial complex of K1.

(28) Let A be a subset of K1 and S be a finite-membered family of subsets
of A. Suppose the subset-closure of S ⊆ the topology of K1. Then the
complex of S is a strict subsimplicial complex of K1.

(29) Let K1 be a subset-closed simplicial complex structure of X, A be a
subset of K1, and S be a finite-membered family of subsets of A. Suppose
S ⊆ the topology of K1. Then the complex of S is a strict subsimplicial
complex of K1.

(30) Let Y1, Y2 be families of subsets of X. Suppose Y1 is finite-membered
and finer than Y2. Then the complex of Y1 is a subsimplicial complex of
the complex of Y2.

(31) VerticesS1 ⊆ VerticesK1.

(32) degree(S1) ≤ degree(K1).
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Let us consider X, K1, S1. We say that S1 is maximal if and only if:

(Def. 14) For every subset A of S1 such that A ∈ the topology of K1 holds A is
simplex-like.

We now state the proposition

(33) S1 is maximal iff 2Ω(S1) ∩ the topology of K1 ⊆ the topology of S1.

Let us consider X, K1. Note that there exists a subsimplicial complex of K1

which is maximal and strict.
We now state three propositions:

(34) Let S2 be a subsimplicial complex of S1. Suppose S1 is maximal and S2

is maximal. Then S2 is a maximal subsimplicial complex of K1.

(35) Let S2 be a subsimplicial complex of S1. If S2 is a maximal subsimplicial
complex of K1, then S2 is maximal.

(36) Let K3, K4 be maximal subsimplicial complexes of K1.
Suppose Ω(K3) = Ω(K4). Then the topological structure of K3 = the topo-
logical structure of K4.

Let us consider X, let K1 be a subset-closed simplicial complex structure
of X, and let A be a subset of K1. Let us assume that 2A ∩ the topology of
K1 is finite-membered. The functor K1�A yields a maximal strict subsimplicial
complex of K1 and is defined as follows:

(Def. 15) ΩK1�A = A.

In the sequel S3 denotes a simplicial complex of X.
Let us consider X, S3 and let A be a subset of S3. Then S3�A is a maximal

strict subsimplicial complex of S3 and it can be characterized by the condition:

(Def. 16) ΩS3�A = A.

The following four propositions are true:

(37) For every subset A of S3 holds the topology of S3�A = 2A∩ the topology
of S3.

(38) For all subsets A, B of S3 and for every subset B′ of S3�A such that
B′ = B holds S3�A�B′ = S3�B.

(39) S3�Ω(S3) = the topological structure of S3.

(40) For all subsets A, B of S3 such that A ⊆ B holds S3�A is a subsimplicial
complex of S3�B.

Let us observe that every integer is finite.

6. The Skeleton of a Simplicial Complex

Let us consider X, K1 and let i be a real number. The skeleton of K1 and i
yielding a simplicial complex structure of X is defined by the condition (Def. 17).
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(Def. 17) The skeleton of K1 and i = the complex of the subsets of the topology
of K1 with cardinality limited by i+ 1.

Let us consider X, K1. Observe that the skeleton of K1 and −1 is empty-
membered. Let us consider i. Note that the skeleton of K1 and i is finite-degree.

Let us consider X, let K1 be an empty-membered simplicial complex struc-
ture of X, and let us consider i. One can check that the skeleton of K1 and i is
empty-membered.

Let us consider D, let K2 be a non void subset-closed simplicial complex
structure of D, and let us consider i. One can check that the skeleton of K2 and
i is non void.

One can prove the following proposition

(41) If −1 ≤ i1 ≤ i2, then the skeleton of K1 and i1 is a subsimplicial complex
of the skeleton of K1 and i2.

Let us consider X, let K1 be a subset-closed simplicial complex structure
of X, and let us consider i. Then the skeleton of K1 and i is a subsimplicial
complex of K1.

We now state several propositions:

(42) If K1 is subset-closed and the skeleton of K1 and i is empty-membered,
then K1 is empty-membered or i = −1.

(43) degree(the skeleton of K1 and i) ≤ degree(K1).

(44) If −1 ≤ i, then degree(the skeleton of K1 and i) ≤ i.
(45) If −1 ≤ i and the skeleton of K1 and i = the topological structure of

K1, then degree(K1) ≤ i.
(46) If K1 is subset-closed and degree(K1) ≤ i, then the skeleton of K1 and

i = the topological structure of K1.

In the sequel K is a non void subset-closed simplicial complex structure.
Let us consider K and let i be a real number. Let us assume that i is integer.

A finite simplex of K is said to be a simplex of i and K if:

(Def. 18)(i) it = i+ 1 if −1 ≤ i ≤ degree(K),
(ii) it is empty, otherwise.

Let us consider K. Note that every simplex of −1 and K is empty.
The following three propositions are true:

(47) For every simplex S of i and K such that S is non empty holds i is
natural.

(48) Every finite simplex S of K is a simplex of S − 1 and K.

(49) LetK be a non void subset-closed simplicial complex structure ofD, S be
a non void subsimplicial complex of K, i be an integer, and A be a simplex
of i and S. If A is non empty or i ≤ degree(S) or degree(S) = degree(K),
then A is a simplex of i and K.
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Let us consider K and let i be a real number. Let us assume that i is integer
and i ≤ degree(K). Let S be a simplex of i and K. A simplex of max(i− 1,−1)
and K is said to be a face of S if:

(Def. 19) It ⊆ S.
One can prove the following proposition

(50) Let S be a simplex of n and K. Suppose n ≤ degree(K). Then X is a
face of S if and only if there exists x such that x ∈ S and S \ {x} = X.

7. The Subdivision of a Simplicial Complex

In the sequel P is a function.
Let us consider X, K1, P . The functor subdivision(P,K1) yields a strict

simplicial complex structure of X and is defined by the conditions (Def. 20).

(Def. 20)(i) Ωsubdivision(P,K1) = Ω(K1), and
(ii) for every subset A of subdivision(P,K1) holds A is simplex-like iff there

exists a ⊆-linear finite simplex-like family S of subsets of K1 such that
A = P ◦S.

Let us consider X, K1, P . One can verify that subdivision(P,K1) is subset-
closed and finite-membered and has empty element.

Let us consider X, let K1 be a void simplicial complex structure of X, and
let us consider P . Observe that subdivision(P,K1) is empty-membered.

The following propositions are true:

(51) degree(subdivision(P,K1)) ≤ degree(K1) + 1.

(52) If domP has non empty elements, then degree(subdivision(P,K1)) ≤
degree(K1).

Let us consider X, let K1 be a finite-degree simplicial complex structure of
X, and let us consider P . Note that subdivision(P,K1) is finite-degree.

Let us consider X, let K1 be a finite-vertices simplicial complex structure
of X, and let us consider P . One can check that subdivision(P,K1) is finite-
vertices.

One can prove the following propositions:

(53) Let K1 be a subset-closed simplicial complex structure of X and given
P . Suppose that

(i) domP has non empty elements, and
(ii) for every n such that n ≤ degree(K1) there exists a subset S of K1 such

that S is simplex-like and CardS = n + 1 and 2S+ ⊆ domP and P ◦2S+ is
a subset of K1 and P �2S+ is one-to-one.
Then degree(subdivision(P,K1)) = degree(K1).

(54) If Y ⊆ Z, then subdivision(P �Y,K1) is a subsimplicial complex of
subdivision(P �Z,K1).
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(55) If domP ∩ the topology of K1 ⊆ Y, then subdivision(P �Y,K1) =
subdivision(P,K1).

(56) If Y ⊆ Z, then subdivision(Y �P,K1) is a subsimplicial complex of
subdivision(Z�P,K1).

(57) If P ◦(the topology of K1) ⊆ Y, then subdivision(Y �P,K1) =
subdivision(P,K1).

(58) subdivision(P, S1) is a subsimplicial complex of subdivision(P,K1).

(59) For every subset A of subdivision(P,K1) such that domP ⊆ the topology
of S1 and A = Ω(S1) holds subdivision(P, S1) = subdivision(P,K1)�A.

(60) Let K3, K4 be simplicial complex structures of X. Suppose the to-
pological structure of K3 = the topological structure of K4. Then
subdivision(P,K3) = subdivision(P,K4).

Let us consider X, K1, P , n. The functor subdivision(n, P,K1) yielding a
simplicial complex structure of X is defined by the condition (Def. 21).

(Def. 21) There exists a function F such that
(i) F (0) = K1,

(ii) F (n) = subdivision(n, P,K1),
(iii) domF = N, and
(iv) for every k and for every simplicial complex structure K ′1 of X such

that K ′1 = F (k) holds F (k + 1) = subdivision(P,K ′1).

Next we state several propositions:

(61) subdivision(0, P,K1) = K1.

(62) subdivision(1, P,K1) = subdivision(P,K1).

(63) For every natural number n1 such that n1 = n + k holds
subdivision(n1, P,K1) = subdivision(n, P, subdivision(k, P,K1)).

(64) Ωsubdivision(n,P,K1) = Ω(K1).

(65) subdivision(n, P, S1) is a subsimplicial complex of subdivision(n, P,K1).
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