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Summary. In this article we describe the notion of affinely independent
subset of a real linear space. First we prove selected theorems concerning opera-
tions on linear combinations. Then we introduce affine independence and prove
the equivalence of various definitions of this notion. We also introduce the notion
of the affine hull, i.e. a subset generated by a set of vectors which is an inter-
section of all affine sets including the given set. Finally, we introduce and prove
selected properties of the barycentric coordinates.
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The terminology and notation used here are introduced in the following papers:
[1], [6], [10], [2], [3], [8], [15], [13], [12], [11], [7], [5], [9], [14], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, y are sets, r, s are real
numbers, S is a non empty additive loop structure, L1, L2, L3 are linear combi-
nations of S, G is an Abelian add-associative right zeroed right complementable
non empty additive loop structure, L4, L5, L6 are linear combinations of G,
g, h are elements of G, R1 is a non empty RLS structure, R is a real linear
space-like non empty RLS structure, A1 is a subset of R, L7, L8, L9 are linear
combinations of R, V is a real linear space, v, v1, v2, w, p are vectors of V , A, B
are subsets of V , F1, F2 are families of subsets of V , and L, L10, L11 are linear
combinations of V .

Let us consider R1 and let A be an empty subset of R1. Note that convA is
empty.

87
c© 2010 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

5 34 80

http://fm.mizar.org/miz/rlaffin1.miz
http://ftp.mizar.org/


88 karol pąk

Let us consider R1 and let A be a non empty subset of R1. One can check
that convA is non empty.

One can prove the following propositions:

(1) For every element v of R holds conv{v} = {v}.
(2) For every subset A of R1 holds A ⊆ convA.

(3) For all subsets A, B of R1 such that A ⊆ B holds convA ⊆ convB.

(4) For all subsets S, A of R1 such that A ⊆ convS holds convS =
convS ∪A.

(5) Let V be an add-associative non empty additive loop structure, A be a
subset of V , and v, w be elements of V . Then (v+w) +A = v+ (w+A).

(6) For every Abelian right zeroed non empty additive loop structure V and
for every subset A of V holds 0V +A = A.

(7) For every subset A of G holds CardA = Card(g +A).

(8) For every element v of S holds v + ∅S = ∅S .
(9) For all subsets A, B of R1 such that A ⊆ B holds r ·A ⊆ r ·B.

(10) (r · s) ·A1 = r · (s ·A1).

(11) 1 ·A1 = A1.

(12) 0 ·A ⊆ {0V }.
(13) For every finite sequence F of elements of S holds (L2 + L3) · F =

L2 · F + L3 · F.
(14) For every finite sequence F of elements of V holds (r ·L) ·F = r · (L ·F ).

(15) Suppose A is linearly independent and A ⊆ B and Lin(B) = V. Then
there exists a linearly independent subset I of V such that A ⊆ I ⊆ B

and Lin(I) = V.

2. Two Transformations of Linear Combinations

Let us consider G, L4, g. The functor g + L4 yielding a linear combination
of G is defined as follows:

(Def. 1) (g + L4)(h) = L4(h− g).

Next we state several propositions:

(16) The support of g + L4 = g + the support of L4.

(17) g + (L5 + L6) = (g + L5) + (g + L6).

(18) v + r · L = r · (v + L).

(19) g + (h+ L4) = (g + h) + L4.

(20) g + 0LCG = 0LCG .

(21) 0G + L4 = L4.
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Let us consider R, L7, r. The functor r ◦ L7 yields a linear combination of
R and is defined as follows:

(Def. 2)(i) For every element v of R holds (r ◦ L7)(v) = L7(r−1 · v) if r 6= 0,
(ii) r ◦ L7 = 0LCR , otherwise.

The following propositions are true:

(22) The support of r ◦ L7 ⊆ r · (the support of L7).

(23) If r 6= 0, then the support of r ◦ L7 = r · (the support of L7).

(24) r ◦ (L8 + L9) = r ◦ L8 + r ◦ L9.

(25) r · (s ◦ L) = s ◦ (r · L).

(26) r ◦ 0LCR = 0LCR .

(27) r ◦ (s ◦ L7) = (r · s) ◦ L7.

(28) 1 ◦ L7 = L7.

3. The Sum of Coefficients of a Linear Combination

Let us consider S, L1. The functor sumL1 yields a real number and is defined
as follows:

(Def. 3) There exists a finite sequence F of elements of S such that F is one-to-
one and rngF = the support of L1 and sumL1 =

∑
(L1 · F ).

One can prove the following propositions:

(29) For every finite sequence F of elements of S such that the support of L1

misses rngF holds
∑

(L1 · F ) = 0.

(30) Let F be a finite sequence of elements of S. If F is one-to-one and the
support of L1 ⊆ rngF, then sumL1 =

∑
(L1 · F ).

(31) sum 0LCS = 0.

(32) For every element v of S such that the support of L1 ⊆ {v} holds
sumL1 = L1(v).

(33) For all elements v1, v2 of S such that the support of L1 ⊆ {v1, v2} and
v1 6= v2 holds sumL1 = L1(v1) + L1(v2).

(34) sumL2 + L3 = sumL2 + sumL3.

(35) sum r · L = r · sumL.

(36) sumL10 − L11 = sumL10 − sumL11.

(37) sumL4 = sum g + L4.

(38) If r 6= 0, then sumL7 = sum r ◦ L7.

(39)
∑

(v + L) = sumL · v +
∑
L.

(40)
∑

(r ◦ L) = r ·
∑
L.
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4. Affine Independence of Vectors

Let us consider V , A. We say that A is affinely independent if and only if:

(Def. 4) A is empty or there exists v such that v ∈ A and (−v + A) \ {0V } is
linearly independent.

Let us consider V . Observe that every subset of V which is empty is al-
so affinely independent. Let us consider v. One can check that {v} is affinely
independent. Let us consider w. Observe that {v, w} is affinely independent.

Let us consider V . Note that there exists a subset of V which is non empty,
trivial, and affinely independent.

We now state three propositions:

(41) A is affinely independent iff for every v such that v ∈ A holds (−v+A)\
{0V } is linearly independent.

(42) A is affinely independent if and only if for every linear combination L of
A such that

∑
L = 0V and sumL = 0 holds the support of L = ∅.

(43) If A is affinely independent and B ⊆ A, then B is affinely independent.

Let us consider V . Note that every subset of V which is linearly independent
is also affinely independent.

In the sequel I denotes an affinely independent subset of V .
Let us consider V , I, v. Observe that v + I is affinely independent.
One can prove the following proposition

(44) If v +A is affinely independent, then A is affinely independent.

Let us consider V , I, r. One can check that r · I is affinely independent.
The following propositions are true:

(45) If r ·A is affinely independent and r 6= 0, then A is affinely independent.

(46) If 0V ∈ A, then A is affinely independent iff A \ {0V } is linearly inde-
pendent.

Let us consider V and let F be a family of subsets of V . We say that F is
affinely independent if and only if:

(Def. 5) If A ∈ F, then A is affinely independent.

Let us consider V . Observe that every family of subsets of V which is empty
is also affinely independent. Let us consider I. One can check that {I} is affinely
independent.

Let us consider V . Note that there exists a family of subsets of V which is
empty and affinely independent and there exists a family of subsets of V which
is non empty and affinely independent.

Next we state two propositions:

(47) If F1 is affinely independent and F2 is affinely independent, then F1∪F2

is affinely independent.

(48) If F1 ⊆ F2 and F2 is affinely independent, then F1 is affinely independent.
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5. Affine Hull

Let us consider R1 and let A be a subset of R1. The functor AffinA yields
a subset of R1 and is defined as follows:

(Def. 6) AffinA =
⋂
{B;B ranges over affine subsets of R1: A ⊆ B}.

Let us consider R1 and let A be a subset of R1. Observe that AffinA is affine.
Let us consider R1 and let A be an empty subset of R1. Note that AffinA

is empty.
Let us consider R1 and let A be a non empty subset of R1. Note that AffinA

is non empty.
One can prove the following propositions:

(49) For every subset A of R1 holds A ⊆ AffinA.

(50) For every affine subset A of R1 holds A = AffinA.

(51) For all subsets A, B of R1 such that A ⊆ B and B is affine holds
AffinA ⊆ B.

(52) For all subsets A, B of R1 such that A ⊆ B holds AffinA ⊆ AffinB.

(53) Affin(v +A) = v + AffinA.

(54) If A1 is affine, then r ·A1 is affine.

(55) If r 6= 0, then Affin(r ·A1) = r ·AffinA1.

(56) Affin(r ·A) = r ·AffinA.

(57) If v ∈ AffinA, then AffinA = v + Up(Lin(−v +A)).

(58) A is affinely independent iff for every B such that B ⊆ A and AffinA =
AffinB holds A = B.

(59) AffinA = {
∑
L;L ranges over linear combinations of A: sumL = 1}.

(60) If I ⊆ A, then there exists an affinely independent subset I1 of V such
that I ⊆ I1 ⊆ A and Affin I1 = AffinA.

(61) Let A, B be finite subsets of V . Suppose A is affinely independent and
AffinA = AffinB and B ≤ A. Then B is affinely independent.

(62) L is convex iff sumL = 1 and for every v holds 0 ≤ L(v).

(63) If L is convex, then L(x) ≤ 1.

(64) If L is convex and L(x) = 1, then the support of L = {x}.
(65) convA ⊆ AffinA.

(66) If x ∈ convA and convA \ {x} is convex, then x ∈ A.
(67) Affin convA = AffinA.

(68) If convA ⊆ convB, then AffinA ⊆ AffinB.

(69) For all subsets A, B of R1 such that A ⊆ AffinB holds Affin(A ∪ B) =
AffinB.
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6. Barycentric Coordinates

Let us consider V and let us consider A. Let us assume that A is affinely
independent. Let us consider x. Let us assume that x ∈ AffinA. The functor
x→ A yielding a linear combination of A is defined by:

(Def. 7)
∑

(x→ A) = x and sumx→ A = 1.

We now state a number of propositions:

(70) If v1, v2 ∈ Affin I, then (1−r)·v1+r ·v2 → I = (1−r)·(v1 → I)+r ·(v2 →
I).

(71) If x ∈ conv I, then x→ I is convex and 0 ≤ (x→ I)(v) ≤ 1.

(72) If x ∈ conv I, then (x→ I)(y) = 1 iff x = y and x ∈ I.
(73) For every I such that x ∈ Affin I and for every v such that v ∈ I holds

0 ≤ (x→ I)(v) holds x ∈ conv I.

(74) If x ∈ I, then conv I \ {x} is convex.

(75) For every B such that x ∈ Affin I and for every y such that y ∈ B holds
(x→ I)(y) = 0 holds x ∈ Affin(I \B) and x→ I = x→ I \B.

(76) For every B such that x ∈ conv I and for every y such that y ∈ B holds
(x→ I)(y) = 0 holds x ∈ conv I \B.

(77) If B ⊆ I and x ∈ AffinB, then x→ B = x→ I.

(78) If v1, v2 ∈ AffinA and r + s = 1, then r · v1 + s · v2 ∈ AffinA.

(79) For all finite subsets A, B of V such that A is affinely independent and
AffinA ⊆ AffinB holds A ≤ B.

(80) Let A, B be finite subsets of V . Suppose A is affinely independent and
AffinA ⊆ AffinB and A = B. Then B is affinely independent.

(81) If L10(v) 6= L11(v), then (r ·L10 +(1−r)·L11)(v) = s iff r = L11(v)−s
L11(v)−L10(v) .

(82) A ∪ {v} is affinely independent iff A is affinely independent but v ∈ A
or v /∈ AffinA.

(83) If w /∈ AffinA and v1, v2 ∈ A and r 6= 1 and r · w + (1 − r) · v1 =
s · w + (1− s) · v2, then r = s and v1 = v2.

(84) If v ∈ I and w ∈ Affin I and p ∈ Affin(I \ {v}) and w = r · v+ (1− r) · p,
then r = (w → I)(v).
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