Integrability Formulas. Part I

Bo Li Qingdao University of Science and Technology China Na Ma Qingdao University of Science and Technology China

Summary. In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, and the polynomial function.

MML identifier: INTEGR12, version: 7.11.04 4.130.1076

The papers [12], [2], [3], [1], [7], [11], [13], [4], [17], [8], [9], [6], [18], [5], [10], [15], [16], and [14] provide the terminology and notation for this paper.

One can check that there exists a subset of \mathbb{R} which is closed-interval.

For simplicity, we use the following convention: a, b, x, r are real numbers, n is an element of \mathbb{N} , A is a closed-interval subset of \mathbb{R} , f, g, f_1, f_2, g_1, g_2 are partial functions from \mathbb{R} to \mathbb{R} , and Z is an open subset of \mathbb{R} .

We now state a number of propositions:

- (1) Suppose $Z \subseteq \text{dom}(\frac{1}{f_1+f_2})$ and for every x such that $x \in Z$ holds $f_1(x) = 1$ and $f_2 = \square^2$. Then $\frac{1}{f_1+f_2}$ is differentiable on Z and for every x such that $x \in Z$ holds $(\frac{1}{f_1+f_2})'_{|Z}(x) = -\frac{2\cdot x}{(1+x^2)^2}$.
- (2) Suppose that $A \subseteq Z$ and $f = \frac{\frac{1}{g_1+g_2}}{f_2}$ and $f_2 =$ the function arccot and $Z \subseteq]-1,1[$ and $g_2 = \square^2$ and for every x such that $x \in Z$ holds $g_1(x) = 1$ and $f_2(x) > 0$ and Z = dom f. Then $\int_A f(x) dx = (-(\text{the function ln}) \cdot (\text{the function arccot}))(\text{sup } A) (-(\text{the function ln}) \cdot (\text{the function arccot}))(\text{inf } A)$.
- (3) Suppose that
- (i) $A \subseteq Z$,

- for every x such that $x \in Z$ holds (the function $\exp(x) < 1$ and
- $Z \subseteq \text{dom}(\text{(the function arctan)} \cdot (\text{the function exp})),$ (iii)
- $Z = \operatorname{dom} f$, and

Then $\int f(x)dx = (\text{the function exp})^2$.

Then $\int f(x)dx = (\text{the function arctan}) \cdot (\text{the function exp})(\sup A) - \lim_{x \to \infty} f(x)dx$ ((the function \arctan) ·(the function \exp))(inf A).

- (4) Suppose that
- $A \subseteq Z$, (i)
- for every x such that $x \in Z$ holds (the function $\exp(x) < 1$ and $f_1(x) = 1,$
- (iii) $Z \subseteq \text{dom}(\text{(the function arccot)} \cdot \text{(the function exp))},$
- $Z = \operatorname{dom} f$, and
- $f = \frac{-\text{the function exp}}{f_1 + (\text{the function exp})^2}.$

Then $\int f(x)dx = ((\text{the function arccot}) \cdot (\text{the function exp}))(\sup A) - ((\text{the function exp}))$ function arccot) ·(the function \exp))(inf A).

- (5) Suppose that
- (i) $A \subseteq Z$,
- $Z = \operatorname{dom} f$, and (ii)
- $f = (\text{the function exp}) \frac{\text{the function sin}}{\text{the function cos}} + \frac{\text{the function exp}}{(\text{the function cos})^2}.$

Then $\int_A f(x)dx = ((\text{the function exp}) \text{ (the function tan)})(\sup A) - ((\text{the function exp}))$ function exp) (the function tan)(inf A).

- (6) Suppose that
- (i) $A \subseteq Z$,
- $Z = \operatorname{dom} f$, and (ii)

Then $\int f(x)dx = ((\text{the function exp}) \frac{\text{the function cos}}{\text{the function sin}} - \frac{\text{the function exp}}{(\text{the function sin})^2}.$ function exp) (the function \cot))(inf A).

- (7) Suppose that
- $A\subseteq Z$ (i)
- (ii) for every x such that $x \in Z$ holds $f_1(x) = 1$,
- (iii) $Z \subseteq]-1,1[,$
- (iv) Z = dom f, and
- $f = \text{(the function exp)} \text{ (the function arctan)} + \frac{\text{the function exp}}{f_1 + \Box^2}$ (\mathbf{v})

Then $\int_A f(x)dx = ((\text{the function exp}) \text{ (the function arctan)})(\sup A) - ((\text{the function exp}) \text{ (the function arctan)})(\inf A).$

- (8) Suppose that
- (i) $A \subseteq Z$,
- (ii) for every x such that $x \in Z$ holds $f_1(x) = 1$,
- (iii) $Z \subseteq]-1,1[,$
- (iv) Z = dom f, and
- (v) f = (the function exp) (the function $\operatorname{arccot}) \frac{\text{the function exp}}{f_1 + \Box^2}$. Then $\int_A f(x) dx = (\text{(the function exp)} \text{ (the function arccot)})(\sup A) - (\text{(the function exp)} \text{ (the function arccot)})(\inf A)$.
- (9) Suppose $A \subseteq Z = \text{dom } f$ and $f = ((\text{the function exp}) \cdot (\text{the function sin}))$ (the function cos). Then $\int_A f(x)dx = ((\text{the function exp}) \cdot (\text{the function sin}))(\text{sup } A) - ((\text{the function exp}) \cdot (\text{the function sin}))(\text{inf } A).$
- (10) Suppose $A \subseteq Z = \text{dom } f$ and $f = ((\text{the function exp}) \cdot (\text{the function exp}))$ (the function sin).

 Then $\int_A f(x)dx = (-(\text{the function exp}) \cdot (\text{the function cos}))(\text{sup } A) (-(\text{the function exp}) \cdot (\text{the function cos}))(\text{inf } A)$.
- (11) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds x > 0 and Z = dom f and $f = ((\text{the function cos}) \cdot (\text{the function ln})) \frac{1}{\text{id}_Z}$. Then $\int_A f(x) dx = ((\text{the function sin}) \cdot (\text{the function ln}))(\text{sup } A) ((\text{the function sin}) \cdot (\text{the function ln}))(\text{inf } A).$
- (12) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds x > 0 and Z = dom f and $f = ((\text{the function sin}) \cdot (\text{the function ln}))$ $\frac{1}{\text{id}_Z}. \text{ Then } \int_A f(x) dx = (-(\text{the function cos}) \cdot (\text{the function ln}))(\text{sup } A) (-(\text{the function cos}) \cdot (\text{the function ln}))(\text{inf } A).$
- (13) Suppose $A \subseteq Z = \text{dom } f$ and f = (the function exp) ((the function cos) $\cdot (\text{the function exp})$). Then $\int_A f(x)dx = ((\text{the function sin}) \cdot (\text{the function exp}))(\text{sup } A) ((\text{the function sin}) \cdot (\text{the function exp}))(\text{inf } A)$.
- (14) Suppose $A \subseteq Z = \text{dom } f$ and f = (the function exp) ((the function \sin) ·(the function \exp)).

 Then $\int_A f(x)dx = (-(\text{the function }\cos) \cdot (\text{the function }\exp))(\sup A) (-(\text{the function }\cos) \cdot (\text{the function }\exp))(\inf A)$.

- (15) Suppose that $A \subseteq Z \subseteq \text{dom}(\text{(the function ln)} \cdot (f_1 + f_2))$ and $r \neq 0$ and for every x such that $x \in Z$ holds $g(x) = \frac{x}{r}$ and g(x) > -1 and g(x) < 1 and $f_1(x) = 1$ and $f_2 = (\square^2) \cdot g$ and Z = dom f and f = (the function arctan) $\cdot g$. Then $\int_{A} f(x)dx = (\mathrm{id}_{Z}((\mathrm{the\ function\ arctan})\cdot g) - \frac{r}{2}((\mathrm{the\ function\ ln}))$ $(f_1 + f_2)$)(sup A) – (id_Z ((the function arctan) g) – $\frac{r}{2}$ ((the function ln) $\cdot (f_1 + f_2)) (\inf A).$
- (16) Suppose that $A \subseteq Z \subseteq \text{dom}(\text{(the function ln)} \cdot (f_1 + f_2))$ and $r \neq 0$ and for every x such that $x \in Z$ holds $g(x) = \frac{x}{r}$ and g(x) > -1 and g(x) < 1 and $f_1(x) = 1$ and $f_2 = (\square^2) \cdot g$ and Z = dom f and f = (the function arccot) $\cdot g$. Then $\int_{A} f(x)dx = (\mathrm{id}_{Z}((\mathrm{the\ function\ arccot})\cdot g) + \frac{r}{2}((\mathrm{the\ function\ ln}))$ $(f_1 + f_2)$)(sup A) – (id_Z ((the function arccot) g) + $\frac{r}{2}$ ((the function ln) $\cdot (f_1 + f_2)))(\inf A).$
- (17) Suppose that
 - $A \subseteq Z$, (i)
- $f = \text{(the function arctan)} \cdot f_1 + \frac{\text{id}_Z}{r (g+f_1^2)},$ for every x such that $x \in Z$ holds g(x) = 1 and $f_1(x) = \frac{x}{r}$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iv) Z = dom f, and
- (v) f is continuous on A.

Then $\int\limits_A f(x)dx = (\mathrm{id}_Z ((\mathrm{the\ function\ arctan})\ \cdot f_1))(\sup A) - (\mathrm{id}_Z ((\mathrm{the\ }$ function $\arctan(f_1)$ (inf A).

- (18) Suppose that
 - (i) $A \subseteq Z$,
- $f = \text{(the function arccot)} \cdot f_1 \frac{\mathrm{id}_Z}{r(g+f_1^2)},$ for every x such that $x \in Z$ holds g(x) = 1 and $f_1(x) = \frac{x}{r}$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iv) $Z = \operatorname{dom} f$, and
- (v) f is continuous on A.

Then $\int_A f(x)dx = (\mathrm{id}_Z((\mathrm{the function arccot}) \cdot f_1))(\sup A) - (\mathrm{id}_Z((\mathrm{the function arccot}) \cdot f_1))$ function $\operatorname{arccot}(\cdot f_1)$)(inf A).

- (19) Suppose that $A \subseteq Z \subseteq]-1,1[$ and for every x such that $x \in Z$ holds $f_1(x) = 1$ and Z = dom f and $Z \subseteq \text{dom}((\square^n) \cdot (\text{the function arcsin}))$ and $1 < n \text{ and } f = \frac{n\left((\Box^{n-1})\cdot(\text{the function arcsin})\right)}{(\Box^{\frac{1}{2}})\cdot(f_1-\Box^2)}$. Then $\int\limits_A f(x)dx = ((\Box^n)\cdot(\text{the function arcsin}))$ function \arcsin)(sup A) – ((\square^n) · (the function \arcsin))(inf A).
- (20) Suppose that $A \subseteq Z \subseteq [-1,1[$ and for every x such that $x \in Z$ holds

$$f_1(x) = 1$$
 and $Z \subseteq \text{dom}((\square^n) \cdot (\text{the function arccos}))$ and $Z = \text{dom } f$ and $1 < n$ and $f = \frac{n((\square^{n-1}) \cdot (\text{the function arccos}))}{(\square^{\frac{1}{2}}) \cdot (f_1 - \square^2)}$. Then $\int_A f(x) dx = (-(\square^n) \cdot (\text{the function arccos}))(\sup A) - (-(\square^n) \cdot (\text{the function arccos}))$ (inf A).

- (21) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_1(x) = 1$ and $Z \subseteq]-1,1[$ and Z = dom f and $f = (\text{the function } \arcsin) + \frac{\text{id}_Z}{(\Box^{\frac{1}{2}}) \cdot (f_1 \Box^2)}$. Then $\int_A f(x) dx = (\text{id}_Z (\text{the function } \arcsin))(\sin A) (\text{id}_Z (\text{the function } \arcsin))(\inf A)$.
- (22) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_1(x) = 1$ and $Z \subseteq]-1,1[$ and Z = dom f and $f = (\text{the function } \arccos) \frac{\text{id}_Z}{(\square^2) \cdot (f_1 \square^2)}$. Then $\int_A f(x) dx = (\text{id}_Z (\text{the function } \arccos))(\sup A) (\text{id}_Z (\text{the function } \arccos))(\inf A)$.
- (23) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) $Z \subseteq]-1,1[,$
- (iii) for every x such that $x \in Z$ holds $f_1(x) = a \cdot x + b$ and $f_2(x) = 1$,
- (iv) Z = dom f, and
- (v) f = a (the function \arcsin) $+\frac{f_1}{(\Box^{\frac{1}{2}})\cdot (f_2-\Box^2)}$.

Then $\int_A f(x)dx = (f_1 \text{ (the function arcsin)})(\sup A) - (f_1 \text{ (the function arcsin)})(\inf A).$

- (24) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) $Z \subseteq [-1, 1[,$
- (iii) for every x such that $x \in Z$ holds $f_1(x) = a \cdot x + b$ and $f_2(x) = 1$,
- (iv) $Z = \operatorname{dom} f$, and
- (v) f = a (the function \arccos) $-\frac{f_1}{(\square^{\frac{1}{2}}) \cdot (f_2 \square^2)}$.

Then $\int_A f(x)dx = (f_1 \text{ (the function arccos)})(\sup A) - (f_1 \text{ (the function arccos)})(\inf A).$

- (25) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds g(x) = 1 and $f_1(x) = \frac{x}{a}$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iii) Z = dom f,
- (iv) f is continuous on A, and

- (v) $f = (\text{the function arcsin}) \cdot f_1 + \frac{\text{id}_Z}{a((\square^{\frac{1}{2}}) \cdot (g f_1^2))}$. Then $\int f(x)dx = (\mathrm{id}_Z((\mathrm{the\ function\ arcsin})\cdot f_1))(\sup A) - (\mathrm{id}_Z((\mathrm{the\ function})))$ $\arcsin(f_1)(\inf A)$.
- (26) Suppose that
 - (i) $A \subseteq Z$,
- for every x such that $x \in \mathbb{Z}$ holds g(x) = 1 and $f_1(x) = \frac{x}{a}$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iii) $Z = \operatorname{dom} f$
- (iv) f is continuous on A, and

 $\arccos(f_1)$ (inf A).

- $f = \text{(the function arccos)} \cdot f_1 \frac{\operatorname{id}_Z}{a\left(\left(\Box^{\frac{1}{2}}\right)\cdot\left(g-f_1^2\right)\right)}.$ Then $\int f(x)dx = (\mathrm{id}_Z((\mathrm{the\ function\ arccos})\cdot f_1))(\sup A) - (\mathrm{id}_Z((\mathrm{the\ function})))$
- (27) Suppose $A \subseteq Z$ and $f = \frac{n((\square^{n-1}) \cdot (\text{the function sin}))}{(\square^{n+1}) \cdot (\text{the function cos})}$ and $1 \le n$ and $Z \subseteq n$ $\operatorname{dom}((\square^n) \cdot (\operatorname{the function tan})) \text{ and } Z = \operatorname{dom} f. \text{ Then } \int f(x) dx = ((\square^n) \cdot (\operatorname{the} f(x))) dx$ function tan))(sup A) – $((\Box^n) \cdot (\text{the function tan}))(\inf A)$.
- (28) Suppose $A \subseteq Z$ and $f = \frac{n((\square^{n-1}) \cdot (\text{the function cos}))}{(\square^{n+1}) \cdot (\text{the function sin})}$ and $1 \leq n$ and $Z \subseteq \operatorname{dom}((\square^n) \cdot (\operatorname{the function cot})) \text{ and } Z = \operatorname{dom} f. \text{ Then } \int f(x)dx =$ $(-(\Box^n)\cdot(\text{the function cot}))(\sup A)-(-(\Box^n)\cdot(\text{the function cot}))(\inf A).$
- (29) Suppose that
 - (i) $A \subseteq Z$,
 - $Z \subseteq \text{dom}((\text{the function } \tan) \cdot f_1),$
- $f = \frac{(\text{(the function } \sin) \cdot f_1)^2}{(\text{(the function } \cos) \cdot f_1)^2},$ for every x such that $x \in Z$ holds $f_1(x) = a \cdot x$ and $a \neq 0$, and (iv)

Then $\int f(x)dx = (\frac{1}{a}((\text{the function } \tan) \cdot f_1) - \mathrm{id}_Z)(\sup A) - (\frac{1}{a}((\text{the function } \cot A) - (\frac{1}{a})(\cot A)) - (\frac{1}{a})(\cot A) - (\frac{1}{a})(\cot A)$ tan) $\cdot f_1$) $- id_Z$)(inf A).

- (30) Suppose that
 - $A\subseteq Z$ (i)
 - $Z \subseteq \text{dom}((\text{the function cot}) \cdot f_1),$
- $f = \frac{((\text{the function } \cos) \cdot f_1)^2}{((\text{the function } \sin) \cdot f_1)^2},$
- for every x such that $x \in Z$ holds $f_1(x) = a \cdot x$ and $a \neq 0$, and (iv)
- (v) Z = dom f.

Then
$$\int_A f(x)dx = ((-\frac{1}{a}) ((\text{the function cot}) \cdot f_1) - \text{id}_Z)(\sup A) - ((-\frac{1}{a}) ((\text{the function cot}) \cdot f_1) - \text{id}_Z)(\inf A).$$

- (31) Suppose that
 - (i) $A \subseteq Z$,
 - for every x such that $x \in Z$ holds $f_1(x) = a \cdot x + b$,
- (iii) Z = dom f, and (iv) $f = a \frac{\text{the function sin}}{\text{the function cos}} + \frac{f_1}{\text{(the function cos)}^2}$.

Then
$$\int_A f(x)dx = (f_1 \text{ (the function tan)})(\sup A) - (f_1 \text{ (the function tan)})(\inf A).$$

- (32) Suppose that
 - (i) $A\subseteq Z$
 - (ii) for every x such that $x \in Z$ holds $f_1(x) = a \cdot x + b$,

(iii)
$$Z = \text{dom } f$$
, and
(iv) $f = a \frac{\text{the function cos}}{\text{the function sin}} - \frac{f_1}{(\text{the function sin})^2}$.
Then $\int_A f(x)dx = (f_1 \text{ (the function cot)})(\sup A) - (f_1 \text{ (the function cot)})(\inf A)$.

- (33) Suppose that
 - $A \subseteq Z$, (i)
 - (ii) for every x such that $x \in Z$ holds $f(x) = \frac{\text{(the function } \sin)(x)^2}{\text{(the function } \cos)(x)^2}$,
- $Z \subseteq \text{dom}((\text{the function } \tan) \mathrm{id}_Z),$
- $Z = \operatorname{dom} f$, and (iv)
- (v) f is continuous on A.

Then
$$\int_A f(x)dx = ((\text{the function } \tan)-\mathrm{id}_Z)(\sup A) - ((\text{the function } \tan)-\mathrm{id}_Z)(\inf A).$$

- (34) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds $f(x) = \frac{\text{(the function } \cos)(x)^2}{\text{(the function } \sin)(x)^2}$,
- $Z \subseteq \operatorname{dom}(-\operatorname{the function } \cot \operatorname{id}_Z),$
- (iv) $Z = \operatorname{dom} f$, and
- (v) f is continuous on A.

Then
$$\int_A f(x)dx = (-\text{the function } \cot - \text{id}_Z)(\sup A) - (-\text{the function } \cot - \text{id}_Z)(\inf A).$$

- (35) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds $f(x) = \frac{1}{x \cdot (1 + (\text{the function ln})(x)^2)}$ and (the function $\ln(x) > -1$ and (the function $\ln(x) < 1$,

- (iii) $Z \subseteq \text{dom}(\text{(the function arctan)} \cdot \text{(the function ln)}),$
- (iv) Z = dom f, and
- (v) f is continuous on A.

Then $\int_A f(x)dx = ((\text{the function arctan}) \cdot (\text{the function ln}))(\sup A) - ((\text{the function arctan}) \cdot (\text{the function ln}))(\inf A).$

- (36) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds $f(x) = -\frac{1}{x \cdot (1 + (\text{the function ln})(x)^2)}$ and (the function $\ln(x) > -1$ and (the function $\ln(x) < 1$,
 - (iii) $Z \subseteq \text{dom}(\text{(the function arccot)} \cdot \text{(the function ln)}),$
- (iv) Z = dom f, and
- (v) f is continuous on A.

Then $\int_A f(x)dx = ((\text{the function arccot}) \cdot (\text{the function ln}))(\sup A) - ((\text{the function arccot}) \cdot (\text{the function ln}))(\inf A).$

- (37) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds $f(x) = \frac{a}{\sqrt{1 (a \cdot x + b)^2}}$ and $f_1(x) = a \cdot x + b$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iii) $Z \subseteq \text{dom}(\text{(the function arcsin)} \cdot f_1),$
- (iv) Z = dom f, and
- (v) f is continuous on A.

Then $\int_A f(x)dx = ((\text{the function arcsin}) \cdot f_1)(\sup A) - ((\text{the function arcsin}) \cdot f_1)(\inf A).$

- (38) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) for every x such that $x \in Z$ holds $f(x) = \frac{a}{\sqrt{1-(a\cdot x+b)^2}}$ and $f_1(x) = a\cdot x + b$ and $f_1(x) > -1$ and $f_1(x) < 1$,
- (iii) $Z \subseteq \text{dom}(\text{the function arccos}) \cdot f_1),$
- (iv) Z = dom f, and
- (v) f is continuous on A.

Then $\int_A f(x)dx = (-(\text{the function } \arccos) \cdot f_1)(\sup A) - (-(\text{the function } \arccos) \cdot f_1)(\inf A).$

(39) Suppose that $A \subseteq Z$ and $f_1 = g - f_2$ and $f_2 = \square^2$ and for every x such that $x \in Z$ holds $f(x) = x \cdot (1 - x^2)^{-\frac{1}{2}}$ and g(x) = 1 and $f_1(x) > 0$ and $Z \subseteq \text{dom}((\square^{\frac{1}{2}}) \cdot f_1)$ and Z = dom f and f is continuous on A. Then $\int_A f(x) dx = \int_A f(x) dx = \int_A f(x) dx = \int_A f(x) dx$

$$(-(\Box^{\frac{1}{2}}) \cdot f_1)(\sup A) - (-(\Box^{\frac{1}{2}}) \cdot f_1)(\inf A).$$

- (40) Suppose that $A \subseteq Z$ and $g = f_1 f_2$ and $f_2 = \square^2$ and for every x such that $x \in Z$ holds $f(x) = x \cdot (a^2 x^2)^{-\frac{1}{2}}$ and $f_1(x) = a^2$ and g(x) > 0 and $Z \subseteq \operatorname{dom}((\square^{\frac{1}{2}}) \cdot g)$ and $Z = \operatorname{dom} f$ and f is continuous on A. Then $\int f(x)dx = \int f(x)dx$ $(-(\Box^{\frac{1}{2}}) \cdot g)(\sup A) - (-(\Box^{\frac{1}{2}}) \cdot g)(\inf A).$
- (41) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) n > 0,
- for every x such that $x \in Z$ holds $f(x) = \frac{\text{(the function } \cos)(x)}{\text{(the function } \sin)(x)^{n+1}}$ and (the function $\sin(x) \neq 0$,
- (iv) $Z \subseteq \operatorname{dom}((\square^n) \cdot \frac{1}{\text{the function sin}}),$
- (v) Z = dom f, and
- (vi) f is continuous on A.

Then
$$\int_A f(x)dx = ((-\frac{1}{n})((\square^n) \cdot \frac{1}{\text{the function sin}}))(\sup A) - ((-\frac{1}{n})((\square^n) \cdot \frac{1}{\text{the function sin}}))(\inf A).$$

- (42) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) n > 0,
- for every x such that $x \in Z$ holds $f(x) = \frac{\text{(the function } \sin)(x)}{\text{(the function } \cos)(x)^{n+1}}$ and (the (iii) function $\cos(x) \neq 0$,
- (iv) $Z \subseteq \text{dom}((\square^n) \cdot \frac{1}{\text{the function cos}}),$
- (v) Z = dom f, and
- (vi) f is continuous on A.

$$Z = \text{dom } f, \text{ and}$$

$$f \text{ is continuous on } A.$$

$$Then \int_{A}^{A} f(x) dx = \left(\frac{1}{n} \left((\Box^n) \cdot \frac{1}{\text{the function cos}} \right) \right) (\sup A) - \left(\frac{1}{n} \left((\Box^n) \cdot \frac{1}{n} \right) \right)$$

$$\frac{1}{\text{the function cos}} (\inf A).$$

- (43) Suppose that $A\subseteq Z$ and $f=\frac{\frac{1}{g_1+g_2}}{f_2}$ and $f_2=$ the function arccot and $Z\subseteq]-1,1[$ and $g_2=\square^2$ and for every x such that $x\in Z$ holds $f(x)=\frac{1}{(1+x^2)\cdot(\text{the function arccot})(x)}$ and $g_1(x)=1$ and $f_2(x)>0$ and $Z=\frac{1}{f}$ dom f. Then $\int f(x)dx = (-(\text{the function ln}) \cdot (\text{the function arccot}))(\sup A) (-(\text{the function ln}) \cdot (\text{the function arccot}))(\inf A).$
- (44) Suppose that
 - (i) $A \subseteq Z$,
 - $Z \subseteq]-1,1[,$ (ii)
- for every x such that $x \in Z$ holds (the function \arcsin)(x) > 0 and $f_1(x) = 1$,

- (iv) $Z \subseteq \text{dom}(\text{(the function ln)} \cdot \text{(the function arcsin)}),$
- (v) Z = dom f, and
- (vi) $f = \frac{1}{((\Box^{\frac{1}{2}}) \cdot (f_1 \Box^2)) \text{ (the function arcsin)}}.$ Then $\int_A f(x) dx = (\text{(the function ln)} \cdot (\text{the function arcsin}))(\sup A) (\text{(the function ln)} \cdot (\text{the function arcsin}))(\inf A).$
- (45) Suppose that
 - (i) $A \subseteq Z$,
 - (ii) $Z \subseteq]-1, 1[,$
- (iii) for every x such that $x \in Z$ holds $f_1(x) = 1$ and (the function $\arccos(x) > 0$,
- (iv) $Z \subseteq \text{dom}(\text{the function ln}) \cdot \text{(the function arccos)},$
- (v) Z = dom f, and
- (vi) $f = \frac{1}{((\Box^{\frac{1}{2}})\cdot(f_1-\Box^2)) \text{ (the function arccos)}}.$ Then $\int_A f(x)dx = (-(\text{the function ln}) \cdot (\text{the function arccos}))(\sup A) (-(\text{the function ln}) \cdot (\text{the function arccos}))(\inf A).$

References

- [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. *Formalized Mathematics*, 8(1):93–102, 1999.
- [3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.
- [4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [5] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73–79, 2005.
- [6] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
- [7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697–702, 1990.
- [8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703–709, 1990.
- [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147–158, 2008, doi:10.2478/v10037-008-0021-3.
- [11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–130, 1991.
- [12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787–791, 1990.
- [13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777–780, 1990.
- [14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
- [15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

- [17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
 [18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255–263, 1998.

Received November 7, 2009