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Summary. This article describes the concept of the nilpotent group and
some properties of the nilpotent groups.
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The papers [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the terminology
and notation for this paper.

For simplicity, we adopt the following convention: x denotes a set, G denotes
a group, A, B, H, H1, H2 denote subgroups of G, a, b, c denote elements of
G, F denotes a finite sequence of elements of the carrier of G, and i, j denote
elements of N.

One can prove the following propositions:

(1) ab = a · [a, b].
(2) [a, b]−1 = [a, b−1]b.

(3) [a, b]−1 = [a−1, b]a.

(4) ([a, b−1]b)−1 = [b−1, a]b.

(5) [a, b−1, c]b = [[a, b−1]b, cb].

(6) [a, b−1]b = [b, a].

(7) [a, b−1, c]b = [b, a, cb].

(8) [a, b, ca] · [c, a, bc] · [b, c, ab] = 1G.
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(9) [A,B] is a subgroup of [B,A].

(10) [A,B] = [B,A].

Let us consider G, A, B. Let us note that the functor [A,B] is commutative.
One can prove the following propositions:

(11) If B is a subgroup of A, then the commutators of A & B ⊆ A.
(12) If B is a subgroup of A, then [A,B] is a subgroup of A.

(13) If B is a subgroup of A, then [B,A] is a subgroup of A.

(14) If [H1,ΩG] is a subgroup of H2, then [H1∩H,H] is a subgroup of H2∩H.
(15) [H1, H2] is a subgroup of [H1,ΩG].

(16) A is a normal subgroup of G iff [A,ΩG] is a subgroup of A.

Let us consider G. The normal subgroups of G yields a set and is defined
by:

(Def. 1) x ∈ the normal subgroups of G iff x is a strict normal subgroup of G.

Let us consider G. One can verify that the normal subgroups of G is non
empty.

Next we state three propositions:

(17) Let F be a finite sequence of elements of the normal subgroups of G and
given j. If j ∈ domF, then F (j) is a strict normal subgroup of G.

(18) The normal subgroups of G ⊆ SubGrG.

(19) Every finite sequence of elements of the normal subgroups of G is a finite
sequence of elements of SubGrG.

Let I1 be a group. We say that I1 is nilpotent if and only if the condition
(Def. 2) is satisfied.

(Def. 2) There exists a finite sequence F of elements of the normal subgroups of
I1 such that

(i) lenF > 0,
(ii) F (1) = Ω(I1),

(iii) F (lenF ) = {1}(I1), and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of I1 such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G1/(G2)(G1)

is a subgroup of Z(I1/G2).

Let us note that there exists a group which is nilpotent and strict.
We now state four propositions:

(20) Let G1 be a subgroup of G and N be a strict normal subgroup of G.
Suppose N is a subgroup of G1 and G1/(N)(G1)

is a subgroup of Z(G/N ).
Then [G1,ΩG] is a subgroup of N .

(21) Let G1 be a subgroup of G and N be a normal subgroup of G. Suppose
N is a strict subgroup of G1 and [G1,ΩG] is a strict subgroup of N . Then
G1/(N)(G1)

is a subgroup of Z(G/N ).
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(22) Let G be a group. Then G is nilpotent if and only if there exists a
finite sequence F of elements of the normal subgroups of G such that
lenF > 0 and F (1) = ΩG and F (lenF ) = {1}G and for every i such that
i, i+1 ∈ domF and for all strict normal subgroups G1, G2 of G such that
G1 = F (i) and G2 = F (i+ 1) holds G2 is a subgroup of G1 and [G1,ΩG]
is a subgroup of G2.

(23) Let G be a group, H, G1 be subgroups of G, G2 be a strict normal
subgroup of G, H1 be a subgroup of H, and H2 be a normal subgroup
of H. Suppose G2 is a subgroup of G1 and G1/(G2)(G1)

is a subgroup of

Z(G/G2) and H1 = G1 ∩ H and H2 = G2 ∩ H. Then H1/(H2)(H1)
is a

subgroup of Z(H/H2).

Let G be a nilpotent group. Note that every subgroup of G is nilpotent.
Let us mention that every group which is commutative is also nilpotent and

every group which is cyclic is also nilpotent.
We now state four propositions:

(24) Let G, H be strict groups, h be a homomorphism from G to H, A be a
strict subgroup of G, and a, b be elements of G. Then h(a) · h(b) · h◦A =
h◦(a · b ·A) and h◦A · h(a) · h(b) = h◦(A · a · b).

(25) Let G, H be strict groups, h be a homomorphism from G to H, A be
a strict subgroup of G, a, b be elements of G, H1 be a subgroup of Imh,

and a1, b1 be elements of Imh. If a1 = h(a) and b1 = h(b) and H1 = h◦A,

then a1 · b1 ·H1 = h(a) · h(b) · h◦A.
(26) Let G, H be strict groups, h be a homomorphism from G to H, G1 be a

strict subgroup of G, G2 be a strict normal subgroup of G, H1 be a strict
subgroup of Imh, and H2 be a strict normal subgroup of Imh. Suppose
G2 is a strict subgroup of G1 and G1/(G2)(G1)

is a subgroup of Z(G/G2) and

H1 = h◦G1 and H2 = h◦G2. Then H1/(H2)(H1)
is a subgroup of Z(Imh/H2).

(27) Let G, H be strict groups, h be a homomorphism from G to H, and A

be a strict normal subgroup of G. Then h◦A is a strict normal subgroup
of Imh.

Let G be a strict nilpotent group, let H be a strict group, and let h be a
homomorphism from G to H. One can check that Imh is nilpotent.

Let G be a strict nilpotent group and let N be a strict normal subgroup of
G. Note that G/N is nilpotent.

One can prove the following three propositions:

(28) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
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(iv) for every i such that i, i + 1 ∈ domF and for every strict normal
subgroup G1 of G such that G1 = F (i) holds [G1,ΩG] = F (i+ 1).
Then G is nilpotent.

(29) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of G such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G/G2 is a commutative group.
Then G is nilpotent.

(30) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of G such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G/G2 is a cyclic group.
Then G is nilpotent.

Let us mention that every group which is nilpotent is also solvable.
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