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Summary. This article introduces the free magmaM(X) constructed on a
set X [6]. Then, we formalize some theorems aboutM(X): if f is a function from
the set X to a magma N , the free magmaM(X) has a unique extension of f to a
morphism ofM(X) into N and every magma is isomorphic to a magma generated
by a set X under a set of relators on M(X). In doing it, the article defines the
stable subset under the law of composition of a magma, the submagma, the
equivalence relation compatible with the law of composition and the equivalence
kernel of a function. We also introduce some schemes on the recursive function.
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The terminology and notation used here have been introduced in the following
articles: [19], [12], [7], [2], [14], [4], [8], [9], [17], [15], [1], [3], [10], [5], [20], [21],
[13], [18], [16], and [11].

1. Preliminaries

Let X be a set, let f be a function from N into X, and let n be a natural
number. Observe that f�n is transfinite sequence-like.

Let X, x be sets. The 0-sequence X(x) yielding a finite 0-sequence of X is
defined as follows:

(Def. 1) The 0-sequence X(x) =

{
x, if x is a finite 0-sequence of X,
〈〉X , otherwise.

Let X be a non empty set, let f be a function from Xω into X, and let c be
a finite 0-sequence of X. Then f(c) is an element of X.

One can prove the following proposition

(1) For all sets X, Y , Z such that Y ⊆ the universe of X and Z ⊆ the
universe of X holds Y × Z ⊆ the universe of X.
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In this article we present several logical schemes. The scheme FuncRecur-
siveUniq deals with a unary functor F yielding a set and functions A, B, and
states that:

A = B
provided the parameters satisfy the following conditions:
• domA = N and for every natural number n holdsA(n) = F(A�n),

and
• domB = N and for every natural number n holds B(n) = F(B�n).

The scheme FuncRecursiveExist deals with a unary functor F yielding a set,
and states that:

There exists a function f such that dom f = N and for every
natural number n holds f(n) = F(f�n)

for all values of the parameter.
The scheme FuncRecursiveUniqu2 deals with a non empty set A, a unary

functor F yielding an element of A, and functions B, C from N into A, and
states that:

B = C
provided the parameters meet the following requirements:
• For every element n of N holds B(n) = F(B�n), and
• For every element n of N holds C(n) = F(C�n).

The scheme FuncRecursiveExist2 deals with a non empty set A and a unary
functor F yielding an element of A, and states that:

There exists a function f from N intoA such that for every natural
number n holds f(n) = F(f�n)

for all values of the parameters.
Let f , g be functions. We say that f extends g if and only if:

(Def. 2) dom g ⊆ dom f and f ≈ g.
Let us note that there exists a multiplicative magma which is empty.

2. Equivalence Relations and Relators

Let M be a multiplicative magma and let R be an equivalence relation of
M . We say that R is compatible if and only if:

(Def. 3) For all elements v, v′, w, w′ of M such that v ∈ [v′]R and w ∈ [w′]R
holds v · w ∈ [v′ · w′]R.

Let M be a multiplicative magma. Observe that ∇the carrier of M is compa-
tible.

Let M be a multiplicative magma. Observe that there exists an equivalence
relation of M which is compatible.

One can prove the following proposition
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(2) Let M be a multiplicative magma and R be an equivalence relation of
M . Then R is compatible if and only if for all elements v, v′, w, w′ of M
such that [v]R = [v′]R and [w]R = [w′]R holds [v · w]R = [v′ · w′]R.

Let M be a multiplicative magma and let R be a compatible equivalence
relation of M . The functor ◦R yielding a binary operation on ClassesR is defined
as follows:

(Def. 4)(i) For all elements x, y of ClassesR and for all elements v, w of M such
that x = [v]R and y = [w]R holds (◦R)(x, y) = [v · w]R if M is non empty,

(ii) ◦R = ∅, otherwise.

Let M be a multiplicative magma and let R be a compatible equivalence
relation of M . The functor M/R yielding a multiplicative magma is defined as
follows:

(Def. 5) M/R = 〈ClassesR, ◦R〉.
Let M be a multiplicative magma and let R be a compatible equivalence

relation of M . Observe that M/R is strict.
Let M be a non empty multiplicative magma and let R be a compatible

equivalence relation of M . One can check that M/R is non empty.
Let M be a non empty multiplicative magma and let R be a compatible

equivalence relation of M . The canonical homomorphism onto cosets of R yields
a function from M into M/R and is defined by:

(Def. 6) For every element v of M holds (the canonical homomorphism onto
cosets of R)(v) = [v]R.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M . Note that the canonical homomorphism onto cosets
of R is multiplicative.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M . Note that the canonical homomorphism onto cosets
of R is onto.

Let M be a multiplicative magma. A function is called a relators of M if:

(Def. 7) rng it ⊆ (the carrier of M)× (the carrier of M).

Let M be a multiplicative magma and let r be a relators of M . The equ-
ivalence relation of r yielding an equivalence relation of M is defined by the
condition (Def. 8).

(Def. 8) The equivalence relation of r =
⋂
{R;R ranges over compatible equiva-

lence relations of M :
∧
i : set

∧
v,w : element of M (i ∈ dom r ∧ r(i) = 〈〈v,

w〉〉 ⇒ v ∈ [w]R)}.
Next we state the proposition

(3) Let M be a multiplicative magma, r be a relators of M , and R be a
compatible equivalence relation of M . Suppose that for every set i and
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for all elements v, w of M such that i ∈ dom r and r(i) = 〈〈v, w〉〉 holds
v ∈ [w]R. Then the equivalence relation of r ⊆ R.

Let M be a multiplicative magma and let r be a relators of M . Note that
the equivalence relation of r is compatible.

Let X, Y be sets and let f be a function from X into Y . The equivalence
kernel of f yielding an equivalence relation of X is defined as follows:

(Def. 9) For all sets x, y holds 〈〈x, y〉〉 ∈ the equivalence kernel of f iff x, y ∈ X
and f(x) = f(y).

In the sequel M , N are non empty multiplicative magmas and f is a function
from M into N .

The following propositions are true:

(4) If f is multiplicative, then the equivalence kernel of f is compatible.

(5) Suppose f is multiplicative. Then there exists a relators r of M such
that the equivalence kernel of f = the equivalence relation of r.

3. Submagmas and Stable Subsets

Let M be a multiplicative magma. A multiplicative magma is said to be a
submagma of M if it satisfies the conditions (Def. 10).

(Def. 10)(i) The carrier of it ⊆ the carrier of M , and
(ii) the multiplication of it = (the multiplication of M) � (the carrier of it).

Let M be a multiplicative magma. One can check that there exists a sub-
magma of M which is strict.

Let M be a non empty multiplicative magma. Note that there exists a sub-
magma of M which is non empty.

In the sequel M denotes a multiplicative magma and N , K denote submag-
mas of M .

One can prove the following propositions:

(6) Suppose N is a submagma of K and K is a submagma of N . Then the
multiplicative magma of N = the multiplicative magma of K.

(7) Suppose the carrier of N = the carrier of M . Then the multiplicative
magma of N = the multiplicative magma of M .

Let M be a multiplicative magma and let A be a subset of M . We say that
A is stable if and only if:

(Def. 11) For all elements v, w of M such that v, w ∈ A holds v · w ∈ A.
Let M be a multiplicative magma. One can check that there exists a subset

of M which is stable.
We now state the proposition

(8) The carrier of N is a stable subset of M .
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Let M be a multiplicative magma and let N be a submagma of M . Note
that the carrier of N is stable.

We now state the proposition

(9) Let F be a function. Suppose that for every set i such that i ∈ domF

holds F (i) is a stable subset of M . Then
⋂
F is a stable subset of M .

For simplicity, we adopt the following convention: M , N are non empty
multiplicative magmas, A is a subset of M , f , g are functions from M into N ,
X is a stable subset of M , and Y is a stable subset of N .

Next we state four propositions:

(10) A is stable iff A ·A ⊆ A.
(11) If f is multiplicative, then f◦X is a stable subset of N .

(12) If f is multiplicative, then f−1(Y ) is a stable subset of M .

(13) If f is multiplicative and g is multiplicative, then {v ∈M : f(v) = g(v)}
is a stable subset of M .

Let M be a multiplicative magma and let A be a stable subset of M . The
multiplication induced by A yields a binary operation on A and is defined by:

(Def. 12) The multiplication induced by A = (the multiplication of M) � A.

LetM be a multiplicative magma and let A be a subset ofM . The submagma
generated by A yielding a strict submagma of M is defined by the conditions
(Def. 13).

(Def. 13)(i) A ⊆ the carrier of the submagma generated by A, and
(ii) for every strict submagma N of M such that A ⊆ the carrier of N

holds the submagma generated by A is a submagma of N .

We now state the proposition

(14) Let M be a multiplicative magma and A be a subset of M . Then A is
empty if and only if the submagma generated by A is empty.

Let M be a multiplicative magma and let A be an empty subset of M . Note
that the submagma generated by A is empty.

The following proposition is true

(15) Let M , N be non empty multiplicative magmas, f be a function from M

into N , and X be a subset of M . Suppose f is multiplicative. Then f◦(the
carrier of the submagma generated by X) = the carrier of the submagma
generated by f◦X.
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4. Free Magmas

Let X be a set. The free magma sequence of X yielding a function from N
into 2the universe of X∪N is defined by the conditions (Def. 14).

(Def. 14)(i) (The free magma sequence of X)(0) = ∅,
(ii) (the free magma sequence of X)(1) = X, and
(iii) for every natural number n such that n ≥ 2 there exists a finite sequence

f1 such that len f1 = n − 1 and for every natural number p such that
p ≥ 1 and p ≤ n − 1 holds f1(p) = (the free magma sequence of X)(p) ×
(the free magma sequence of X)(n− p) and (the free magma sequence of
X)(n) =

⋃
disjoint f1.

Let X be a set and let n be a natural number. The functor Mn(X) is defined
by:

(Def. 15) Mn(X) = (the free magma sequence of X)(n).

Let X be a non empty set and let n be a non zero natural number. Observe
that Mn(X) is non empty.

In the sequel X is a set.
We now state four propositions:

(16) M0(X) = ∅.
(17) M1(X) = X.

(18) M2(X) = X ×X × {1}.
(19) M3(X) = X × (X ×X × {1})× {1} ∪X ×X × {1} ×X × {2}.

We adopt the following convention: x, y, Y are sets and n, m, p are elements
of N.

One can prove the following propositions:

(20) Suppose n ≥ 2. Then there exists a finite sequence f1 such that len f1 =
n−1 and for every p such that p ≥ 1 and p ≤ n−1 holds f1(p) = Mp(X)×
Mn−′p(X) and Mn(X) =

⋃
disjoint f1.

(21) Suppose n ≥ 2 and x ∈ Mn(X). Then there exist p, m such that x2 = p

and 1 ≤ p ≤ n−1 and (x1)1 ∈ Mp(X) and (x1)2 ∈ Mm(X) and n = p+m

and x ∈ Mp(X)×Mm(X)× {p}.
(22) If x ∈ Mn(X) and y ∈ Mm(X), then 〈〈〈〈x, y〉〉, n〉〉 ∈ Mn+m(X).

(23) If X ⊆ Y, then Mn(X) ⊆ Mn(Y ).

Let X be a set. The carrier of free magma on X is defined as follows:

(Def. 16) The carrier of free magma on X =
⋃

disjoint((the free magma sequence
of X)�N+).

One can prove the following proposition

(24) X = ∅ iff the carrier of free magma on X = ∅.
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Let X be an empty set. Observe that the carrier of free magma on X is
empty.

Let X be a non empty set. One can verify that the carrier of free magma
on X is non empty. Let w be an element of the carrier of free magma on X.
Observe that w2 is non zero and natural.

We now state four propositions:

(25) For every non empty set X and for every element w of the carrier of free
magma on X holds w ∈ Mw2(X)× {w2}.

(26) Let X be a non empty set and v, w be elements of the carrier of free
magma on X. Then 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, v2 +w2〉〉 is an element of the carrier
of free magma on X.

(27) If X ⊆ Y, then the carrier of free magma on X ⊆ the carrier of free
magma on Y .

(28) If n > 0, then Mn(X)× {n} ⊆ the carrier of free magma on X.

Let X be a set. The multiplication of free magma on X yields a binary
operation on the carrier of free magma on X and is defined as follows:

(Def. 17)(i) For all elements v, w of the carrier of free magma on X and for all n,
m such that n = v2 and m = w2 holds (the multiplication of free magma
on X)(v, w) = 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, n+m〉〉 if X is non empty,

(ii) the multiplication of free magma on X = ∅, otherwise.

Let X be a set. The functor M(X) yields a multiplicative magma and is
defined by:

(Def. 18) M(X) = 〈the carrier of free magma on X, the multiplication of free
magma on X〉.

Let X be a set. Note that M(X) is strict.
Let X be an empty set. One can verify that M(X) is empty.
Let X be a non empty set. Note that M(X) is non empty. Let w be an

element of M(X). One can verify that w2 is non zero and natural.
The following proposition is true

(29) For every set X and for every subset S of X holds M(S) is a submagma
of M(X).

Let X be a set and let w be an element of M(X). The functor lengthw yields
a natural number and is defined by:

(Def. 19) lengthw =

{
w2, if X is non empty,
0, otherwise.

One can prove the following proposition

(30) X = {w1;w ranges over elements of M(X): lengthw = 1}.
In the sequel v, v1, v2, w, w1, w2 denote elements of M(X).
One can prove the following propositions:
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(31) If X is non empty, then v · w = 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, length v + lengthw〉〉.
(32) If X is non empty, then v = 〈〈v1, v2〉〉 and length v ≥ 1.

(33) length(v · w) = length v + lengthw.

(34) If lengthw ≥ 2, then there exist w1, w2 such that w = w1 · w2 and
lengthw1 < lengthw and lengthw2 < lengthw.

(35) If v1 · v2 = w1 · w2, then v1 = w1 and v2 = w2.

Let X be a set and let n be a natural number. The n-canonical image of X
yields a function from Mn(X) into M(X) and is defined as follows:

(Def. 20)(i) For every x such that x ∈ dom (the n-canonical image of X) holds
(the n-canonical image of X)(x) = 〈〈x, n〉〉 if n > 0,

(ii) the n-canonical image of X = ∅, otherwise.

Let X be a set and let n be a natural number. Observe that the n-canonical
image of X is one-to-one.

Let X be a non empty set. Observe that the 1-canonical image of X
In the sequel X, Y , Z are non empty sets.
Next we state three propositions:

(36) For every subset A of M(X) such that A = (the 1-canonical image of
X)◦X holds M(X) = the submagma generated by A.

(37) Let R be a compatible equivalence relation of M(X). Then M(X)/R =
the submagma generated by (the canonical homomorphism onto cosets of
R)◦(the 1-canonical image of X)◦X.

(38) For every function f from X into Y holds (the 1-canonical image of Y )·f
is a function from X into M(Y ).

Let X be a non empty set, let M be a non empty multiplicative magma, let
n, m be non zero natural numbers, let f be a function from Mn(X) into M , and
let g be a function from Mm(X) into M . The functor f × g yielding a function
from Mn(X)×Mm(X)× {n} into M is defined by the condition (Def. 21).

(Def. 21) Let x be an element of Mn(X) × Mm(X) × {n}, y be an element of
Mn(X), and z be an element of Mm(X). If y = (x1)1 and z = (x1)2, then
(f × g)(x) = f(y) · g(z).

In the sequel M is a non empty multiplicative magma.
One can prove the following propositions:

(39) Let f be a function from X into M . Then there exists a function h

from M(X) into M such that h is multiplicative and h extends f · (the
1-canonical image of X)−1.

(40) Let f be a function from X into M and h, g be functions from M(X)
into M . Suppose that

(i) h is multiplicative,
(ii) h extends f · (the 1-canonical image of X)−1,

(iii) g is multiplicative, and
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(iv) g extends f · (the 1-canonical image of X)−1.

Then h = g.

For simplicity, we adopt the following rules: M , N are non empty multipli-
cative magmas, f is a function from M into N , H is a non empty submagma of
N , and R is a compatible equivalence relation of M .

We now state three propositions:

(41) Suppose f is multiplicative and the carrier of H = rng f and R = the
equivalence kernel of f . Then there exists a function g from M/R into H
such that f = g · the canonical homomorphism onto cosets of R and g is
bijective and multiplicative.

(42) Let g1, g2 be functions from M/R into N . Suppose g1 · the canonical
homomorphism onto cosets of R = g2 · the canonical homomorphism onto
cosets of R. Then g1 = g2.

(43) Let M be a non empty multiplicative magma. Then there exists a non
empty set X and there exists a relators r of M(X) such that there exists a
function from M(X)/the equivalence relation of r into M which is bijective and
multiplicative.

Let X, Y be non empty sets and let f be a function from X into Y . The
functor M(f) yields a function from M(X) into M(Y ) and is defined by:

(Def. 22) M(f) is multiplicative and M(f) extends (the 1-canonical image of Y ) ·
f · (the 1-canonical image of X)−1.

Let X, Y be non empty sets and let f be a function from X into Y . One
can verify that M(f) is multiplicative.

In the sequel f denotes a function from X into Y and g denotes a function
from Y into Z.

Next we state several propositions:

(44) M(g · f) = M(g) ·M(f).

(45) For every function g from X into Z such that Y ⊆ Z and f = g holds
M(f) = M(g).

(46) M(idX) = iddomM(f).

(47) If f is one-to-one, then M(f) is one-to-one.

(48) If f is onto, then M(f) is onto.
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