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Summary. Rough sets, developed by Pawlak [6], are an important tool to
describe a situation of incomplete or partially unknown information. One of the
algebraic models deals with the pair of the upper and the lower approximation.
Although usually the tolerance or the equivalence relation is taken into account
when considering a rough set, here we rather concentrate on the model with the
pair of two definable sets, hence we are close to the notion of an interval set. In
this article, the lattices of rough sets and intervals are formalized. This paper,
being essentially the continuation of [3], is also a step towards the formalization
of the algebraic theory of rough sets, as in [4] or [9].

MML identifier: INTERVA1, version: 7.11.04 4.130.1076

The articles [2], [1], [10], [7], [3], [5], and [8] provide the terminology and notation
for this paper.

1. Interval Sets

Let U be a set and let X, Y be subsets of U . The functor [X,Y ]I yielding a
family of subsets of U is defined by:

(Def. 1) [X,Y ]I = {A ⊆ U : X ⊆ A ∧ A ⊆ Y }.
In the sequel U denotes a set and X, Y denote subsets of U .
Next we state several propositions:

(1) For every set x holds x ∈ [X,Y ]I iff X ⊆ x ⊆ Y.
(2) If [X,Y ]I 6= ∅, then X, Y ∈ [X,Y ]I.
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(3) For every set U and for all subsets A, B of U such that A 6⊆ B holds
[A,B]I = ∅.

(4) For every set U and for all subsets A, B of U such that [A,B]I = ∅ holds
A 6⊆ B.

(5) For all subsets A, B of U such that [A,B]I 6= ∅ holds A ⊆ B.
(6) For all subsets A, B, C, D of U such that [A,B]I 6= ∅ and [A,B]I =

[C,D]I holds A = C and B = D.

(7) For every non empty set U and for every non empty subset A of U holds
[A, ∅U ]I = ∅.

(8) For every subset A of U holds [A,A]I = {A}.
Let us consider U . A family of subsets of U is said to be an interval set of

U if:

(Def. 2) There exist subsets A, B of U such that it = [A,B]I.

We now state two propositions:

(9) For every non empty set U holds ∅ is an interval set of U .

(10) For every non empty set U and for every subset A of U holds {A} is an
interval set of U .

Let us consider U and let A, B be subsets of U . Then [A,B]I is an interval
set of U .

Let U be a non empty set. Note that there exists an interval set of U which
is non empty.

We now state three propositions:

(11) Let U be a non empty set and A be a set. Then A is a non empty interval
set of U if and only if there exist subsets A1, A2 of U such that A1 ⊆ A2
and A = [A1, A2]I.

(12) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I e [B1, B2]I = {C;C ranges over subsets of U :
A1 ∩B1 ⊆ C ∧ C ⊆ A2 ∩B2}.

(13) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I d [B1, B2]I = {C;C ranges over subsets of U :
A1 ∪B1 ⊆ C ∧ C ⊆ A2 ∪B2}.

Let U be a non empty set and let A, B be non empty interval sets of U . The
functor A ∩I B yielding an interval set of U is defined by:

(Def. 3) A ∩I B = A eB.

The functor A ∪I B yields an interval set of U and is defined by:

(Def. 4) A ∪I B = A dB.

Let U be a non empty set and let A, B be non empty interval sets of U .
Note that A ∩I B is non empty and A ∪I B is non empty.
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In the sequel U denotes a non empty set and A, B, C denote non empty
interval sets of U .

Let us consider U , A. The functor A1 yielding a subset of U is defined by:

(Def. 5) There exists a subset B of U such that A = [A1, B]I.

The functor A2 yielding a subset of U is defined as follows:

(Def. 6) There exists a subset B of U such that A = [B,A2]I.

We now state several propositions:

(14) For every set X holds X ∈ A iff A1 ⊆ X ⊆ A2.
(15) A = [A1, A2]I.

(16) A1 ⊆ A2.
(17) A ∪I B = [A1 ∪B1, A2 ∪B2]I.
(18) A ∩I B = [A1 ∩B1, A2 ∩B2]I.

Let us consider U and let us consider A, B. Let us observe that A = B if
and only if:

(Def. 7) A1 = B1 and A2 = B2.

The following propositions are true:

(19) A ∪I A = A.

(20) A ∩I A = A.

(21) A ∪I B = B ∪I A.
(22) A ∩I B = B ∩I A.
(23) (A ∪I B) ∪I C = A ∪I (B ∪I C).

(24) (A ∩I B) ∩I C = A ∩I (B ∩I C).

Let X be a set and let F be a family of subsets of X. We say that F is
ordered if and only if:

(Def. 8) There exist sets A, B such that A, B ∈ F and for every set Y holds
Y ∈ F iff A ⊆ Y ⊆ B.

Let X be a set. Observe that there exists a family of subsets of X which is
non empty and ordered.

Next we state two propositions:

(25) For all subsets A, B of U such that A ⊆ B holds [A,B]I is a non empty
ordered family of subsets of U .

(26) Every non empty interval set of U is a non empty ordered family of
subsets of U .

Let X be a set. We introduce minX as a synonym of
⋂
X. We introduce

maxX as a synonym of
⋃
X.

Let X be a set and let F be a non empty ordered family of subsets of X.
Then minF is an element of F . Then maxF is an element of F .

We now state a number of propositions:
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(27) Let A, B be subsets of U and F be an ordered non empty family of
subsets of U . If F = [A,B]I, then minF = A and maxF = B.

(28) For all sets X, Y and for every non empty ordered family A of subsets
of X holds Y ∈ A iff minA ⊆ Y ⊆ maxA.

(29) For every set X and for all non empty ordered families A, B, C of subsets
of X holds A dB e C = (A dB) e (A d C).

(30) For every set X and for all non empty ordered families A, B, C of subsets
of X holds A e (B d C) = A eB dA e C.

(31) A ∪I B ∩I C = (A ∪I B) ∩I (A ∪I C).

(32) A ∩I (B ∪I C) = A ∩I B ∪I A ∩I C.
(33) For every set X and for all non empty ordered families A, B of subsets

of X holds A e (A dB) = A.

(34) For every set X and for all non empty ordered families A, B of subsets
of X holds A eB dB = B.

(35) A ∩I (A ∪I B) = A.

(36) A ∩I B ∪I B = B.

2. Families of Subsets

One can prove the following propositions:

(37) For every non empty set U and for all families A, B of subsets of U holds
A \\B is a family of subsets of U .

(38) Let U be a non empty set and A, B be non empty ordered families
of subsets of U . Then A \\B = {C ⊆ U : minA \ maxB ⊆ C ∧ C ⊆
maxA \minB}.

(39) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I \\[B1, B2]I = {C ⊆ U : A1 \ B2 ⊆ C ∧ C ⊆
A2 \B1}.

Let U be a non empty set and let A, B be non empty interval sets of U . The
functor A \I B yields an interval set of U and is defined as follows:

(Def. 9) A \I B = A \\B.
Let U be a non empty set and let A, B be non empty interval sets of U .

Observe that A \I B is non empty.
Next we state several propositions:

(40) A \I B = [A1 \B2, A2 \B1]I.
(41) For all subsets X, Y of U such that A = [X,Y ]I holds A \I C =

[X \ C2, Y \ C1]I.
(42) For all subsets X, Y , W , Z of U such that A = [X,Y ]I and C = [W,Z]I

holds A \I C = [X \ Z, Y \W ]I.
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(43) For every non empty set U holds [ΩU ,ΩU ]I is a non empty interval set
of U .

(44) For every non empty set U holds [∅U , ∅U ]I is a non empty interval set of
U .

Let U be a non empty set. Note that [ΩU ,ΩU ]I is non empty and [∅U , ∅U ]I
is non empty.

Let U be a non empty set and let A be a non empty interval set of U . The
functor −A yielding a non empty interval set of U is defined as follows:

(Def. 10) −A = [ΩU ,ΩU ]I \I A.
We now state four propositions:

(45) For every non empty set U and for every non empty interval set A of U
holds −A = [(A2)c, (A1)c]I.

(46) For all subsets X, Y of U such that A = [X,Y ]I and X ⊆ Y holds
−A = [Y c, Xc]I.

(47) −[∅U , ∅U ]I = [ΩU ,ΩU ]I.

(48) −[ΩU ,ΩU ]I = [∅U , ∅U ]I.

3. Counterexamples

Next we state several propositions:

(49) There exists a non empty interval set A of U such that A ∩I −A 6=
[∅U , ∅U ]I.

(50) There exists a non empty interval set A of U such that A ∪I −A 6=
[ΩU ,ΩU ]I.

(51) There exists a non empty interval set A of U such that A\IA 6= [∅U , ∅U ]I.

(52) For every non empty interval set A of U holds U ∈ A ∪I −A.
(53) For every non empty interval set A of U holds ∅ ∈ A ∩I −A.
(54) For every non empty interval set A of U holds ∅ ∈ A \I A.

4. Lattice of Interval Sets

Let U be a non empty set. The functor I(2U ) yielding a non empty set is
defined by:

(Def. 11) For every set x holds x ∈ I(2U ) iff x is a non empty interval set of U .

Let U be a non empty set. The functor InterLattU yields a strict non empty
lattice structure and is defined by the conditions (Def. 12).

(Def. 12)(i) The carrier of InterLattU = I(2U ), and
(ii) for all elements a, b of the carrier of InterLattU and for all non empty

interval sets a′, b′ of U such that a′ = a and b′ = b holds (the join operation
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of InterLattU)(a, b) = a′ ∪I b′ and (the meet operation of InterLattU)(a,
b) = a′ ∩I b′.

Let U be a non empty set. Observe that InterLattU is lattice-like.
Let X be a tolerance space.

(Def. 13) An element of 2the carrier of X × 2the carrier of X is said to be a rough set
of X.

One can prove the following proposition

(55) For every tolerance space X and for every rough set A of X there exist
subsets B, C of X such that A = 〈〈B, C〉〉.

Let X be a tolerance space and let A be a subset of X. The functor RSA
yielding a rough set of X is defined by:

(Def. 14) RSA = 〈〈LAp(A), UAp(A)〉〉.
Let X be a tolerance space and let A be a rough set of X. The functor

LAp(A) yielding a subset of X is defined as follows:

(Def. 15) LAp(A) = A1.

The functor UAp(A) yielding a subset of X is defined by:

(Def. 16) UAp(A) = A2.

Let X be a tolerance space and let A, B be rough sets of X. Let us observe
that A = B if and only if:

(Def. 17) LAp(A) = LAp(B) and UAp(A) = UAp(B).

Let X be a tolerance space and let A, B be rough sets of X. The functor
A ∪I B yields a rough set of X and is defined by:

(Def. 18) A ∪I B = 〈〈LAp(A) ∪ LAp(B), UAp(A) ∪UAp(B)〉〉.
The functor A ∩I B yielding a rough set of X is defined as follows:

(Def. 19) A ∩I B = 〈〈LAp(A) ∩ LAp(B), UAp(A) ∩UAp(B)〉〉.
In the sequel X denotes a tolerance space and A, B, C denote rough sets of

X.
Next we state a number of propositions:

(56) LAp(A ∪I B) = LAp(A) ∪ LAp(B).

(57) UAp(A ∪I B) = UAp(A) ∪UAp(B).

(58) LAp(A ∩I B) = LAp(A) ∩ LAp(B).

(59) UAp(A ∩I B) = UAp(A) ∩UAp(B).

(60) A ∪I A = A.

(61) A ∩I A = A.

(62) A ∪I B = B ∪I A.
(63) A ∩I B = B ∩I A.
(64) (A ∪I B) ∪I C = A ∪I (B ∪I C).

(65) (A ∩I B) ∩I C = A ∩I (B ∩I C).
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(66) A ∩I (B ∪I C) = A ∩I B ∪I A ∩I C.
(67) A ∪I A ∩I B = A.

(68) A ∩I (A ∪I B) = A.

5. Lattice of Rough Sets

Let us consider X. The functor RoughSetsX is defined as follows:

(Def. 20) For every set x holds x ∈ RoughSetsX iff x is a rough set of X.

Let us consider X. One can check that RoughSetsX is non empty.
Let us consider X and let R be an element of RoughSetsX. The functor @R

yielding a rough set of X is defined by:

(Def. 21) @R = R.

Let us consider X and let R be a rough set of X. The functor @R yielding
an element of RoughSetsX is defined as follows:

(Def. 22) @R = R.

Let us consider X. The functor RSLatticeX yields a strict lattice structure
and is defined by the conditions (Def. 23).

(Def. 23)(i) The carrier of RSLatticeX = RoughSetsX, and
(ii) for all elements A, B of RoughSetsX and for all rough sets A′, B′ of X

such that A = A′ and B = B′ holds (the join operation of RSLatticeX)(A,
B) = A′ ∪IB′ and (the meet operation of RSLatticeX)(A, B) = A′ ∩IB′.

Let us consider X. Observe that RSLatticeX is non empty.
Let us consider X. Observe that RSLatticeX is lattice-like.
Let us consider X. Note that RSLatticeX is distributive.
Let us consider X. The functor ERSX yields a rough set of X and is defined

by:

(Def. 24) ERSX = 〈〈∅, ∅〉〉.
One can prove the following proposition

(69) For every rough set A of X holds ERSX ∪I A = A.

Let us consider X. The functor TRS(X) is a rough set of X and is defined
as follows:

(Def. 25) TRS(X) = 〈〈ΩX , ΩX〉〉.
One can prove the following proposition

(70) For every rough set A of X holds TRS(X) ∩I A = A.

Let us consider X. Note that RSLatticeX is bounded.
We now state the proposition

(71) Let X be a tolerance space, A, B be elements of RSLatticeX, and A′,
B′ be rough sets of X. If A = A′ and B = B′, then A v B iff LAp(A′) ⊆
LAp(B′) and UAp(A′) ⊆ UAp(B′).
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Let us consider X. Observe that RSLatticeX is complete.
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