Labelled State Transition Systems

Michał Trybulec
YAC Software
Warsaw, Poland

Summary. This article introduces labelled state transition systems, where transitions may be labelled by words from a given alphabet. Reduction relations from [4] are used to define transitions between states, acceptance of words, and reachable states. Deterministic transition systems are also defined.

MML identifier: REWRITE3, version: $\underline{7.11 .024 .125 .1059}$

The articles [1], [8], [2], [11], [6], [17], [7], [9], [16], [15], [14], [4], [10], [13], [3], [12], and [5] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: $x, x_{1}, x_{2}, y, y_{1}, y_{2}, z, z_{1}$, z_{2}, X, X_{1}, X_{2} are sets, E is a non empty set, e is an element of E, u, v, v_{1}, v_{2}, w, w_{1}, w_{2} are elements of $E^{\omega}, F, F_{1}, F_{2}$ are subsets of E^{ω}, and k, l are natural numbers.

Next we state a number of propositions:
(1) For every finite sequence p such that $k \in \operatorname{dom} p$ holds $\left(\langle x\rangle{ }^{\wedge} p\right)(k+1)=$ $p(k)$.
(2) For every finite sequence p such that $p \neq \emptyset$ there exists a finite sequence q and there exists x such that $p=q^{\wedge}\langle x\rangle$ and len $p=\operatorname{len} q+1$.
(3) For every finite sequence p such that $k \in \operatorname{dom} p$ and $k+1 \notin \operatorname{dom} p$ holds len $p=k$.
(4) Let R be a binary relation, P be a reduction sequence w.r.t. R, and q_{1}, q_{2} be finite sequences. Suppose $P=q_{1}{ }^{\wedge} q_{2}$ and len $q_{1}>0$ and len $q_{2}>0$. Then q_{1} is a reduction sequence w.r.t. R and q_{2} is a reduction sequence w.r.t. R.
(5) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len $P>1$. Then there exists a reduction sequence Q w.r.t. R such that $\langle P(1)\rangle^{\wedge} Q=P$ and len $Q+1=$ len P.
(6) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len $P>1$. Then there exists a reduction sequence Q w.r.t. R such that $Q^{\wedge}\langle P($ len $P)\rangle=P$ and len $Q+1=$ len P.
(7) Let R be a binary relation and P be a reduction sequence w.r.t. R. Suppose len $P>1$. Then there exists a reduction sequence Q w.r.t. R such that len $Q+1=\operatorname{len} P$ and for every k such that $k \in \operatorname{dom} Q$ holds $Q(k)=P(k+1)$.
(8) For every binary relation R such that $\langle x, y\rangle$ is a reduction sequence w.r.t. R holds $\langle x, y\rangle \in R$.
(9) If $w=u^{\wedge} v$, then len $u \leq$ len w and len $v \leq \operatorname{len} w$.
(10) If $w=u^{\frown} v$ and $u \neq\langle \rangle_{E}$ and $v \neq\langle \rangle_{E}$, then len $u<\operatorname{len} w$ and len $v<$ len w.
(11) If $w_{1}{ }^{\curvearrowleft} v_{1}=w_{2}{ }^{\wedge} v_{2}$ and if len $w_{1}=\operatorname{len} w_{2}$ or len $v_{1}=\operatorname{len} v_{2}$, then $w_{1}=w_{2}$ and $v_{1}=v_{2}$.
(12) If $w_{1} \frown v_{1}=w_{2} \frown v_{2}$ and if len $w_{1} \leq \operatorname{len} w_{2}$ or len $v_{1} \geq$ len v_{2}, then there exists u such that $w_{1}{ }^{\curvearrowleft} u=w_{2}$ and $v_{1}=u^{\curvearrowleft} v_{2}$.
(13) If $w_{1} \frown v_{1}=w_{2} \frown v_{2}$, then there exists u such that $w_{1} \frown u=w_{2}$ and $v_{1}=u^{\frown} v_{2}$ or there exists u such that $w_{2}{ }^{\wedge} u=w_{1}$ and $v_{2}=u^{\frown} v_{1}$.
Let us consider X. We introduce transition-systems over X which are extensions of 1-sorted structure and are systems

〈 a carrier, a transition 〉,
where the carrier is a set and the transition is a relation between the carrier \times X and the carrier.

2. Transition Systems over Subsets of E^{ω}

Let us consider E, F and let \mathfrak{T} be a transition-system over F. We say that \mathfrak{T} is deterministic if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) The transition of \mathfrak{T} is a function,
(ii) $\left\rangle_{E} \notin\right.$ rng dom (the transition of \mathfrak{T}), and
(iii) for every element s of \mathfrak{T} and for all u, v such that $u \neq v$ and $\langle s$, $u\rangle \in \operatorname{dom}($ the transition of $\mathfrak{T})$ and $\langle s, v\rangle \in \operatorname{dom}($ the transition of \mathfrak{T}) it is not true that there exists w such that $u^{\wedge} w=v$ or $v^{\curvearrowleft} w=u$.
We now state the proposition
(14) For every transition-system \mathfrak{T} over F such that dom (the transition of $\mathfrak{T})=\emptyset$ holds \mathfrak{T} is deterministic.

Let us consider E, F. Observe that there exists a transition-system over F which is strict, non empty, finite, and deterministic.

3. Productions

Let us consider X, let \mathfrak{T} be a transition-system over X, and let us consider x, y, z. The predicate $x, y \rightarrow \mathfrak{z} z$ is defined by:
(Def. 2) $\langle\langle x, y\rangle, z\rangle \in$ the transition of \mathfrak{T}.
We now state several propositions:
(15) Let \mathfrak{T} be a transition-system over X. Suppose $x, y \rightarrow \mathfrak{T} z$. Then
(i) $x \in \mathfrak{T}$,
(ii) $y \in X$,
(iii) $z \in \mathfrak{T}$,
(iv) $x \in \operatorname{dom}$ dom (the transition of \mathfrak{T}),
(v) $y \in \operatorname{rng}$ dom (the transition of \mathfrak{T}), and
(vi) $\quad z \in \operatorname{rng}$ (the transition of \mathfrak{T}).
(16) Let \mathfrak{T}_{1} be a transition-system over X_{1} and \mathfrak{T}_{2} be a transition-system over X_{2}. Suppose the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. If $x, y \rightarrow \mathfrak{T}_{1} z$, then $x, y \rightarrow \mathfrak{T}_{2} z$.
(17) Let \mathfrak{T} be a transition-system over F. Suppose the transition of \mathfrak{T} is a function. If $x, y \rightarrow \mathfrak{z} z_{1}$ and $x, y \rightarrow \mathfrak{z} z_{2}$, then $z_{1}=z_{2}$.
(18) For every deterministic transition-system \mathfrak{T} over F such that $\left\rangle_{E} \notin\right.$ rng dom (the transition of \mathfrak{T}) holds $x,\langle \rangle_{E} \nrightarrow \mathfrak{T} y$.
(19) Let \mathfrak{T} be a deterministic transition-system over F. If $u \neq v$ and $x, u \rightarrow \mathfrak{T}$ z_{1} and $x, v \rightarrow \mathfrak{T} z_{2}$, then it is not true that there exists w such that $u^{\wedge} w=v$ or $v^{\wedge} w=u$.

4. Direct Transitions

Let us consider E, F, let \mathfrak{T} be a transition-system over F, and let us consider $x_{1}, x_{2}, y_{1}, y_{2}$. The predicate $x_{1}, x_{2} \Rightarrow{ }_{\mathfrak{T}} y_{1}, y_{2}$ is defined as follows:
(Def. 3) There exist v, w such that $v=y_{2}$ and $x_{1}, w \rightarrow \mathfrak{T} y_{1}$ and $x_{2}=w^{\wedge} v$.
The following propositions are true:
(20) Let \mathfrak{T} be a transition-system over F. Suppose $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y_{1}, y_{2}$. Then $x_{1}, y_{1} \in \mathfrak{T}$ and $x_{2}, y_{2} \in E^{\omega}$ and $x_{1} \in \operatorname{dom}$ dom (the transition of \mathfrak{T}) and $y_{1} \in \operatorname{rng}($ the transition of $\mathfrak{T})$.
(21) Let \mathfrak{T}_{1} be a transition-system over F_{1} and \mathfrak{T}_{2} be a transition-system over F_{2}. Suppose the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2} and $x_{1}, x_{2} \Rightarrow \mathfrak{T}_{1}$ y_{1}, y_{2}. Then $x_{1}, x_{2} \Rightarrow \mathfrak{T}_{2} y_{1}, y_{2}$.
(22) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ there exists w such that $x, w \rightarrow \mathfrak{T} y$ and $u=w^{\frown} v$.
(23) For every transition-system \mathfrak{T} over F holds $x, y \rightarrow \mathfrak{T} z$ iff $x, y \Rightarrow \mathfrak{T} z,\langle \rangle_{E}$.
(24) For every transition-system \mathfrak{T} over F holds $x, v \rightarrow_{\mathfrak{T}} y$ iff $x, v^{\wedge} w \Rightarrow_{\mathfrak{T}} y, w$.
(25) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ holds x, u^{\frown} $w \Rightarrow{ }_{\mathfrak{T}} y, v^{\frown} w$.
(26) For every transition-system \mathfrak{T} over F such that $x, u \Rightarrow_{\mathfrak{T}} y, v$ holds len $u \geq$ len v.
(27) Let \mathfrak{T} be a transition-system over F. Suppose the transition of \mathfrak{T} is a function. If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y_{1}, z$ and $x_{1}, x_{2} \Rightarrow \mathfrak{T} y_{2}, z$, then $y_{1}=y_{2}$.
(28) For every transition-system \mathfrak{T} over F such that $\left\rangle_{E} \notin\right.$ rng dom (the transition of \mathfrak{T}) holds $x, z \not \nrightarrow \mathfrak{T}^{y}, z$.
(29) For every transition-system \mathfrak{T} over F such that $\left\rangle_{E} \notin\right.$ rng dom (the transition of \mathfrak{T}) holds if $x, u \Rightarrow_{\mathfrak{T}} y, v$, then len $u>\operatorname{len} v$.
(30) For every deterministic transition-system \mathfrak{T} over F such that $x_{1}, x_{2} \Rightarrow \mathfrak{T}$ y_{1}, z_{1} and $x_{1}, x_{2} \Rightarrow \mathfrak{T} y_{2}, z_{2}$ holds $y_{1}=y_{2}$ and $z_{1}=z_{2}$.

5. Reduction Relation

In the sequel \mathfrak{T} is a non empty transition-system over F, s, t are elements of \mathfrak{T}, and S is a subset of \mathfrak{T}.

Let us consider E, F, \mathfrak{T}. The functor $\Rightarrow_{\mathfrak{T}}$ yielding a binary relation on (the carrier of $\mathfrak{T}) \times E^{\omega}$ is defined as follows:
(Def. 4) $\left\langle\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle\right\rangle \in \Rightarrow_{\mathfrak{T}}$ iff $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y_{1}, y_{2}$.
The following propositions are true:
(31) If $\langle x, y\rangle \in \Rightarrow_{\mathfrak{T}}$, then there exist s, v, t, w such that $x=\langle s, v\rangle$ and $y=\langle t, w\rangle$.
(32) Suppose $\left\langle\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle\right\rangle \in \Rightarrow \mathfrak{T}$. Then $x_{1}, y_{1} \in \mathfrak{T}$ and $x_{2}, y_{2} \in E^{\omega}$ and $x_{1} \in$ dom dom (the transition of $\left.\mathfrak{T}\right)$ and $y_{1} \in \operatorname{rng}($ the transition of $\mathfrak{T})$.
(33) If $x \in \Rightarrow \mathfrak{T}$, then there exist s, t, v, w such that $x=\langle\langle s, v\rangle,\langle t, w\rangle\rangle$.
(34) Let \mathfrak{T}_{1} be a non empty transition-system over F_{1} and \mathfrak{T}_{2} be a non empty transition-system over F_{2}. Suppose the carrier of $\mathfrak{T}_{1}=$ the carrier of \mathfrak{T}_{2} and the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. Then $\Rightarrow \mathfrak{T}_{1}=\Rightarrow_{\mathfrak{T}_{2}}$.
(35) If $\left\langle\left\langle x_{1}, x_{2}\right\rangle,\left\langle y_{1}, y_{2}\right\rangle\right\rangle \in \Rightarrow_{\mathfrak{T}}$, then there exist v, w such that $v=y_{2}$ and $x_{1}, w \rightarrow \mathfrak{T} y_{1}$ and $x_{2}=w^{\wedge} v$.
(36) If $\langle\langle x, u\rangle,\langle y, v\rangle\rangle \in \Rightarrow \mathfrak{T}$, then there exists w such that $x, w \rightarrow \mathfrak{T} y$ and $u=w^{\frown} v$.
(37) $\quad x, y \rightarrow \mathfrak{T} z$ iff $\left\langle\langle x, y\rangle,\left\langle z,\langle \rangle_{E}\right\rangle\right\rangle \in \Rightarrow \mathfrak{T}$.
(38) $\quad x, v \rightarrow_{\mathfrak{T}} y$ iff $\left\langle\left\langle x, v^{\frown} w\right\rangle,\langle y, w\rangle\right\rangle \in \Rightarrow_{\mathfrak{T}}$.
(39) If $\langle\langle x, u\rangle,\langle y, v\rangle\rangle \in \Rightarrow_{\mathfrak{T}}$, then $\left\langle\left\langle x, u^{\wedge} w\right\rangle,\left\langle y, v^{\wedge} w\right\rangle\right\rangle \in \Rightarrow_{\mathfrak{T}}$.
(40) If $\langle\langle x, u\rangle,\langle y, v\rangle\rangle \in \Rightarrow{ }_{\mathfrak{T}}$, then len $u \geq$ len v.
(41) If the transition of \mathfrak{T} is a function, then if $\left\langle x,\left\langle y_{1}, z\right\rangle\right\rangle,\left\langle x,\left\langle y_{2}, z\right\rangle\right\rangle \in \Rightarrow \mathfrak{T}$, then $y_{1}=y_{2}$.
(42) If $\left\rangle_{E} \notin \operatorname{rng} \operatorname{dom}\right.$ (the transition of \mathfrak{T}), then if $\langle\langle x, u\rangle,\langle y, v\rangle\rangle \in \Rightarrow_{\mathfrak{T}}$, then len $u>\operatorname{len} v$.
(43) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then $\langle\langle x, z\rangle,\langle y, z\rangle\rangle \notin \Rightarrow \mathfrak{T}$.
(44) If \mathfrak{T} is deterministic, then if $\left\langle x, y_{1}\right\rangle,\left\langle x, y_{2}\right\rangle \in \Rightarrow_{\mathfrak{T}}$, then $y_{1}=y_{2}$.
(45) If \mathfrak{T} is deterministic, then if $\left\langle x,\left\langle y_{1}, z_{1}\right\rangle\right\rangle,\left\langle x,\left\langle y_{2}, z_{2}\right\rangle\right\rangle \in \Rightarrow \mathfrak{T}$, then $y_{1}=$ y_{2} and $z_{1}=z_{2}$.
(46) If \mathfrak{T} is deterministic, then $\Rightarrow \mathfrak{T}$ is function-like.

6. Reduction Sequences

Let us consider x, E. The functor $\operatorname{dim}_{2}(x, E)$ yields an element of E^{ω} and is defined as follows:
(Def. 5) $\operatorname{dim}_{2}(x, E)=\left\{\begin{array}{l}x_{2}, \text { if there exist } y, u \text { such that } x=\langle y, u\rangle, \\ \emptyset, \text { otherwise. }\end{array}\right.$
Next we state a number of propositions:
(47) Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$ and given k. If $k, k+1 \in \operatorname{dom} P$, then there exist s, v, t, w such that $P(k)=\langle s, v\rangle$ and $P(k+1)=\langle t, w\rangle$.
(48) Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$ and given k. If $k, k+1 \in \operatorname{dom} P$, then $P(k)=\left\langle P(k)_{\mathbf{1}}, P(k)_{\mathbf{2}}\right\rangle$ and $P(k+1)=\left\langle P(k+1)_{\mathbf{1}}, P(k+1)_{\mathbf{2}}\right\rangle$.
(49) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. Suppose $k, k+1 \in$ dom P. Then
(i) $P(k)_{\mathbf{1}} \in \mathfrak{T}$,
(ii) $P(k)_{\mathbf{2}} \in E^{\omega}$,
(iii) $P(k+1)_{\mathbf{1}} \in \mathfrak{T}$,
(iv) $P(k+1)_{\mathbf{2}} \in E^{\omega}$,
(v) $\quad P(k)_{\mathbf{1}} \in \operatorname{dom}$ dom (the transition of \mathfrak{T}), and
(vi) $\quad P(k+1)_{\mathbf{1}} \in \operatorname{rng}($ the transition of $\mathfrak{T})$.
(50) Let \mathfrak{T}_{1} be a non empty transition-system over F_{1} and \mathfrak{T}_{2} be a non empty transition-system over F_{2}. Suppose the carrier of $\mathfrak{T}_{1}=$ the carrier of \mathfrak{T}_{2} and the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. Then every reduction sequence w.r.t. $\Rightarrow \mathfrak{T}_{1}$ is a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}_{2}$.
(51) Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{F}$. If there exist x, u such that $P(1)=\langle x, u\rangle$, then for every k such that $k \in \operatorname{dom} P$ holds $\operatorname{dim}_{2}(P(k), E)=P(k)_{\mathbf{2}}$.
(52) Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{q}$. If $P(\operatorname{len} P)=\langle y, w\rangle$, then for every k such that $k \in \operatorname{dom} P$ there exists u such that $P(k)_{\mathbf{2}}=u^{\sim} w$.
(53) For every reduction sequence P w.r.t. $\Rightarrow_{\mathfrak{T}}$ such that $P(1)=\langle x, v\rangle$ and $P($ len $P)=\langle y, w\rangle$ there exists u such that $v=u^{\curvearrowright} w$.
(54) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1)=\langle x, u\rangle$ and $P($ len $P)=\langle y, u\rangle$, then for every k such that $k \in \operatorname{dom} P$ holds $P(k)_{\mathbf{2}}=u$.
(55) Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k. Suppose $k, k+1 \in$ $\operatorname{dom} P$. Then there exist v, w such that $v=P(k+1)_{\mathbf{2}}$ and $P(k)_{\mathbf{1}}, w \rightarrow \mathfrak{T}$ $P(k+1)_{\mathbf{1}}$ and $P(k)_{\mathbf{2}}=w^{\frown} v$.
(56) Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$ and given k. Suppose $k, k+1 \in$ dom P and $P(k)=\langle x, u\rangle$ and $P(k+1)=\langle y, v\rangle$. Then there exists w such that $x, w \rightarrow \mathfrak{T} y$ and $u=w^{\frown} v$.
(57) $\quad x, y \rightarrow \mathfrak{T} z$ iff $\left\langle\langle x, y\rangle,\left\langle z,\langle \rangle_{E}\right\rangle\right\rangle$ is a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$.
(58) $\quad x, v \rightarrow_{\mathfrak{T}} y$ iff $\left\langle\left\langle x, v^{\frown} w\right\rangle,\langle y, w\rangle\right\rangle$ is a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$.
(59) For every reduction sequence P w.r.t. $\Rightarrow_{\mathfrak{T}}$ such that $P(1)=\langle x, v\rangle$ and $P(\operatorname{len} P)=\langle y, w\rangle$ holds len $v \geq$ len w.
(60) Suppose $\left\rangle_{E} \notin \mathrm{rng}\right.$ dom (the transition of \mathfrak{T}). Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$. If $P(1)=\langle x, u\rangle$ and $P(\operatorname{len} P)=\langle y, u\rangle$, then len $P=1$ and $x=y$.
(61) Suppose $\left\rangle_{E} \notin \mathrm{rng}\right.$ dom (the transition of \mathfrak{T}). Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1)_{\mathbf{2}}=P(\operatorname{len} P)_{\mathbf{2}}$, then len $P=1$.
(62) Suppose $\left\rangle_{E} \notin \mathrm{rng} \operatorname{dom}(\right.$ the transition of $\mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1)=\langle x, u\rangle$ and $P(\operatorname{len} P)=\left\langle y,\langle \rangle_{E}\right\rangle$, then len $P \leq \operatorname{len} u+1$.
(63) Suppose $\left\rangle_{E} \notin \mathrm{rng}\right.$ dom (the transition of \mathfrak{T}). Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$. If $P(1)=\langle x,\langle e\rangle\rangle$ and $P(\operatorname{len} P)=\left\langle y,\langle \rangle_{E}\right\rangle$, then len $P=2$.
(64) Suppose $\left\rangle_{E} \notin \mathrm{rng}\right.$ dom (the transition of \mathfrak{T}). Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$. If $P(1)=\langle x, v\rangle$ and $P(\operatorname{len} P)=\langle y, w\rangle$, then len $v>\operatorname{len} w$ or len $P=1$ and $x=y$ and $v=w$.
(65) Suppose $\left\rangle_{E} \notin \mathrm{rng}\right.$ dom (the transition of \mathfrak{T}). Let P be a reduction sequence w.r.t. $\Rightarrow \mathfrak{T}$ and given k. If $k, k+1 \in \operatorname{dom} P$, then $P(k)_{\mathbf{2}} \neq P(k+1)_{\mathbf{2}}$.
(66) Suppose $\left\rangle_{E} \notin \operatorname{rng} \operatorname{dom}(\right.$ the transition of $\mathfrak{T})$. Let P be a reduction sequence w.r.t. $\Rightarrow_{\mathfrak{T}}$ and given k, l. If $k, l \in \operatorname{dom} P$ and $k<l$, then $P(k)_{\mathbf{2}} \neq P(l)_{\mathbf{2}}$.
(67) Suppose \mathfrak{T} is deterministic. Let P, Q be reduction sequences w.r.t. $\Rightarrow \mathfrak{T}$. If $P(1)=Q(1)$, then for every k such that $k \in \operatorname{dom} P$ and $k \in \operatorname{dom} Q$ holds $P(k)=Q(k)$.
(68) If \mathfrak{T} is deterministic, then for all reduction sequences P, Q w.r.t. $\Rightarrow \mathfrak{T}$ such that $P(1)=Q(1)$ and len $P=\operatorname{len} Q$ holds $P=Q$.
(69) Suppose \mathfrak{T} is deterministic. Let P, Q be reduction sequences w.r.t. $\Rightarrow \mathfrak{T}$. If $P(1)=Q(1)$ and $P(\operatorname{len} P)_{\mathbf{2}}=Q(\operatorname{len} Q)_{\mathbf{2}}$, then $P=Q$.

7. Reductions

The following propositions are true:
(70) If $\Rightarrow \mathfrak{T}$ reduces $\langle x, v\rangle$ to $\langle y, w\rangle$, then there exists u such that $v=u^{\wedge} w$.
(71) If $\Rightarrow \mathfrak{T}$ reduces $\langle x, u\rangle$ to $\langle y, v\rangle$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\left\langle x, u^{\wedge} w\right\rangle$ to $\left\langle y, v^{\wedge} w\right\rangle$.
(72) If $x, y \rightarrow_{\mathfrak{T}} z$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, y\rangle$ to $\left\langle z,\langle \rangle_{E}\right\rangle$.
(73) If $x, v \rightarrow_{\mathfrak{T}} y$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\left\langle x, v^{\wedge} w\right\rangle$ to $\langle y, w\rangle$.
(74) If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y_{1}, y_{2}$, then $\Rightarrow_{\mathfrak{T}}$ reduces $\left\langle x_{1}, x_{2}\right\rangle$ to $\left\langle y_{1}, y_{2}\right\rangle$.
(75) If $\Rightarrow{ }_{\mathfrak{T}}$ reduces $\langle x, v\rangle$ to $\langle y, w\rangle$, then len $v \geq \operatorname{len} w$.
(76) If $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, w\rangle$ to $\left\langle y, v^{\wedge} w\right\rangle$, then $v=\langle \rangle_{E}$.
(77) If $\left\rangle_{E} \notin\right.$ rng dom (the transition of \mathfrak{T}), then if $\Rightarrow \mathfrak{T}$ reduces $\langle x, v\rangle$ to $\langle y$, $w\rangle$, then len $v>\operatorname{len} w$ or $x=y$ and $v=w$.
(78) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then if $\Rightarrow_{\mathfrak{T}}$ reduces $\langle x, u\rangle$ to $\langle y$, $u\rangle$, then $x=y$.
(79) If $\left\rangle_{E} \notin \operatorname{rng} \operatorname{dom}\right.$ (the transition of \mathfrak{T}), then if $\Rightarrow \mathfrak{T}$ reduces $\langle x,\langle e\rangle\rangle$ to $\langle y$, $\left\rangle_{E}\right\rangle$, then $\left\langle\langle x,\langle e\rangle\rangle,\left\langle y,\langle \rangle_{E}\right\rangle\right\rangle \in \Rightarrow_{\mathfrak{T}}$.
(80) If \mathfrak{T} is deterministic, then if $\Rightarrow \mathfrak{T}$ reduces x to $\left\langle y_{1}, z\right\rangle$ and $\Rightarrow_{\mathfrak{T}}$ reduces x to $\left\langle y_{2}, z\right\rangle$, then $y_{1}=y_{2}$.

8. Transitions

Let us consider $E, F, \mathfrak{T}, x_{1}, x_{2}, y_{1}, y_{2}$. The predicate $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{1}, y_{2}$ is defined as follows:
(Def. 6) $\quad \Rightarrow_{\mathfrak{T}}$ reduces $\left\langle x_{1}, x_{2}\right\rangle$ to $\left\langle y_{1}, y_{2}\right\rangle$.
We now state a number of propositions:
(81) Let \mathfrak{T}_{1} be a non empty transition-system over F_{1} and \mathfrak{T}_{2} be a non empty transition-system over F_{2}. Suppose the carrier of $\mathfrak{T}_{1}=$ the carrier of \mathfrak{T}_{2} and the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}_{1}}^{*} y_{1}, y_{2}$, then $x_{1}, x_{2} \Rightarrow{\underset{\mathfrak{T}}{2}}_{*}^{*} y_{1}, y_{2}$.
(82) $x, y \Rightarrow_{\frac{2}{2}}^{*} x, y$.
(83) If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{1}, y_{2}$ and $y_{1}, y_{2} \Rightarrow_{\mathfrak{T}}^{*} z_{1}, z_{2}$, then $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} z_{1}, z_{2}$.
(84) If $x, y \rightarrow_{\mathfrak{T}} z$, then $x, y \Rightarrow_{\mathfrak{T}}^{*} z,\langle \rangle_{E}$.
(85) If $x, v \rightarrow_{\mathfrak{T}} y$, then $x, v^{\wedge} w \Rightarrow_{\mathfrak{T}}^{*} y, w$.
(86) If $x, u \Rightarrow_{\mathfrak{T}}^{*} y, v$, then $x, u^{\wedge} w \Rightarrow_{\mathfrak{T}}^{*} y, v^{\wedge} w$.
(87) If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y_{1}, y_{2}$, then $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{1}, y_{2}$.
(88) If $x, v \Rightarrow_{\frac{*}{2}}^{*} y, w$, then there exists u such that $v=u^{\wedge} w$.
(89) If $x, v \Rightarrow_{\frac{2}{2}}^{*} y, w$, then len $w \leq \operatorname{len} v$.
(90) If $x, w \Rightarrow_{\underset{T}{*}}^{*} y, v^{\wedge} w$, then $v=\langle \rangle_{E}$.
(91) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then $x, u \Rightarrow_{\mathfrak{T}}^{*} y, u$ iff $x=y$.
(92) If $\left\rangle_{E} \notin \mathrm{rng} \operatorname{dom}(\right.$ the transition of $\mathfrak{T})$, then if $x,\langle e\rangle \Rightarrow_{\mathfrak{T}}^{*} y,\langle \rangle_{E}$, then $x,\langle e\rangle \Rightarrow_{\mathfrak{T}} y,\langle \rangle_{E}$.
(93) If \mathfrak{T} is deterministic, then if $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{1}, z$ and $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{2}$, z, then $y_{1}=y_{2}$.

9. Acceptance of Words

Let us consider $E, F, \mathfrak{T}, x_{1}, x_{2}, y$. The predicate $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y$ is defined as follows:
(Def. 7) $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y,\langle \rangle_{E}$.
We now state several propositions:
(94) Let \mathfrak{T}_{1} be a non empty transition-system over F_{1} and \mathfrak{T}_{2} be a non empty transition-system over F_{2}. Suppose the carrier of $\mathfrak{T}_{1}=$ the carrier of \mathfrak{T}_{2} and the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. If $x, y \Rightarrow_{\mathfrak{T}_{1}}^{*} z$, then $x, y \Rightarrow_{\mathfrak{T}_{2}}^{*} z$.
(95) $x,\langle \rangle_{E} \Rightarrow_{\mathfrak{T}}^{*} x$.
(96) If $x, u \Rightarrow_{\mathfrak{T}}^{*} y$, then $x, u^{\wedge} v \Rightarrow_{\mathfrak{T}}^{*} y, v$.
(97) If $x, y \rightarrow \mathfrak{T} z$, then $x, y \Rightarrow_{\mathfrak{T}}^{*} z$.
(98) If $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}} y,\langle \rangle_{E}$, then $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y$.
(99) If $x, u \Rightarrow_{\mathfrak{T}}^{*} y$ and $y, v \Rightarrow_{\mathfrak{T}}^{*} z$, then $x, u{ }^{\wedge} v \Rightarrow_{\mathfrak{T}}^{*} z$.
(100) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then $x,\langle \rangle_{E} \Rightarrow_{\mathfrak{T}}^{*} y$ iff $x=y$.
(101) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then if $x,\langle e\rangle \Rightarrow_{\mathfrak{T}}^{*} y$, then $x,\langle e\rangle \Rightarrow_{\mathfrak{T}}$ $y,\langle \rangle_{E}$.
(102) If \mathfrak{T} is deterministic, then if $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{1}$ and $x_{1}, x_{2} \Rightarrow_{\mathfrak{T}}^{*} y_{2}$, then $y_{1}=y_{2}$.

10. Reachable States

Let us consider E, F, \mathfrak{T}, x, X. The functor $x-\operatorname{succ}_{\mathfrak{T}}(X)$ yields a subset of \mathfrak{T} and is defined as follows:
(Def. 8) $x-$ succ $_{\mathfrak{T}}(X)=\left\{s: \bigvee_{t}\left(t \in X \wedge t, x \Rightarrow_{\mathfrak{T}}^{*} s\right)\right\}$.
The following propositions are true:
(103) $s \in x-\operatorname{succ}_{\mathfrak{T}}(X)$ iff there exists t such that $t \in X$ and $t, x \Rightarrow_{\mathfrak{T}}^{*} s$.
(104) If $\left\rangle_{E} \notin \operatorname{rng}\right.$ dom (the transition of \mathfrak{T}), then $\left\rangle_{E}\right.$--succ $\mathfrak{T}(S)=S$.
(105) Let \mathfrak{T}_{1} be a non empty transition-system over F_{1} and \mathfrak{T}_{2} be a non empty transition-system over F_{2}. Suppose the carrier of $\mathfrak{T}_{1}=$ the carrier of \mathfrak{T}_{2} and the transition of $\mathfrak{T}_{1}=$ the transition of \mathfrak{T}_{2}. Then $x-\operatorname{succ}_{\mathfrak{T}_{1}}(X)=$ $x-$ succ $_{\mathfrak{T}_{2}}(X)$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153-159, 2006, doi:10.2478/v10037-006-0019-7.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics, $15(\mathbf{1}): 11-15,2007$, doi:10.2478/v10037-007-0002-y.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[16] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 5, 2009

