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Summary. This article introduces labelled state transition systems, where
transitions may be labelled by words from a given alphabet. Reduction relations
from [4] are used to define transitions between states, acceptance of words, and
reachable states. Deterministic transition systems are also defined.

MML identifier: REWRITE3, version: 7.11.02 4.125.1059

The articles [1], [8], [2], [11], [6], [17], [7], [9], [16], [15], [14], [4], [10], [13], [3],
[12], and [5] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, x1, x2, y, y1, y2, z, z1,
z2, X, X1, X2 are sets, E is a non empty set, e is an element of E, u, v, v1, v2,
w, w1, w2 are elements of Eω, F , F1, F2 are subsets of Eω, and k, l are natural
numbers.
Next we state a number of propositions:

(1) For every finite sequence p such that k ∈ dom p holds (〈x〉 a p)(k+ 1) =
p(k).

(2) For every finite sequence p such that p 6= ∅ there exists a finite sequence
q and there exists x such that p = q a 〈x〉 and len p = len q + 1.

(3) For every finite sequence p such that k ∈ dom p and k+1 /∈ dom p holds
len p = k.

(4) Let R be a binary relation, P be a reduction sequence w.r.t. R, and q1,
q2 be finite sequences. Suppose P = q1 a q2 and len q1 > 0 and len q2 > 0.
Then q1 is a reduction sequence w.r.t. R and q2 is a reduction sequence
w.r.t. R.
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(5) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that 〈P (1)〉 a Q = P and lenQ+ 1 = lenP.

(6) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that Q a 〈P (lenP )〉 = P and lenQ+ 1 = lenP.

(7) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that lenQ + 1 = lenP and for every k such that k ∈ domQ holds
Q(k) = P (k + 1).

(8) For every binary relation R such that 〈x, y〉 is a reduction sequence w.r.t.
R holds 〈〈x, y〉〉 ∈ R.

(9) If w = u a v, then lenu ≤ lenw and len v ≤ lenw.
(10) If w = u a v and u 6= 〈〉E and v 6= 〈〉E , then lenu < lenw and len v <
lenw.

(11) If w1av1 = w2av2 and if lenw1 = lenw2 or len v1 = len v2, then w1 = w2
and v1 = v2.

(12) If w1 a v1 = w2 a v2 and if lenw1 ≤ lenw2 or len v1 ≥ len v2, then there
exists u such that w1 a u = w2 and v1 = u a v2.

(13) If w1 a v1 = w2 a v2, then there exists u such that w1 a u = w2 and
v1 = u a v2 or there exists u such that w2 a u = w1 and v2 = u a v1.

Let us consider X. We introduce transition-systems over X which are exten-
sions of 1-sorted structure and are systems
〈 a carrier, a transition 〉,

where the carrier is a set and the transition is a relation between the carrier×
X and the carrier.

2. Transition Systems over Subsets of Eω

Let us consider E, F and let T be a transition-system over F . We say that
T is deterministic if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) The transition of T is a function,
(ii) 〈〉E /∈ rng dom (the transition of T), and
(iii) for every element s of T and for all u, v such that u 6= v and 〈〈s,
u〉〉 ∈ dom (the transition of T) and 〈〈s, v〉〉 ∈ dom (the transition of T) it is
not true that there exists w such that u a w = v or v a w = u.

We now state the proposition

(14) For every transition-system T over F such that dom (the transition of
T) = ∅ holds T is deterministic.
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Let us consider E, F . Observe that there exists a transition-system over F
which is strict, non empty, finite, and deterministic.

3. Productions

Let us consider X, let T be a transition-system over X, and let us consider
x, y, z. The predicate x, y →T z is defined by:

(Def. 2) 〈〈〈〈x, y〉〉, z〉〉 ∈ the transition of T.
We now state several propositions:

(15) Let T be a transition-system over X. Suppose x, y →T z. Then
(i) x ∈ T,

(ii) y ∈ X,
(iii) z ∈ T,

(iv) x ∈ domdom (the transition of T),
(v) y ∈ rng dom (the transition of T), and
(vi) z ∈ rng (the transition of T).
(16) Let T1 be a transition-system overX1 and T2 be a transition-system over
X2. Suppose the transition of T1 = the transition of T2. If x, y →T1 z, then
x, y →T2 z.

(17) Let T be a transition-system over F . Suppose the transition of T is a
function. If x, y →T z1 and x, y →T z2, then z1 = z2.

(18) For every deterministic transition-system T over F such that 〈〉E /∈
rng dom (the transition of T) holds x, 〈〉E 6→T y.

(19) Let T be a deterministic transition-system over F . If u 6= v and x, u→T

z1 and x, v →T z2, then it is not true that there exists w such that uaw = v
or v a w = u.

4. Direct Transitions

Let us consider E, F , let T be a transition-system over F , and let us consider
x1, x2, y1, y2. The predicate x1, x2 ⇒T y1, y2 is defined as follows:

(Def. 3) There exist v, w such that v = y2 and x1, w →T y1 and x2 = w a v.

The following propositions are true:

(20) Let T be a transition-system over F . Suppose x1, x2 ⇒T y1, y2. Then
x1, y1 ∈ T and x2, y2 ∈ Eω and x1 ∈ domdom (the transition of T) and
y1 ∈ rng (the transition of T).

(21) Let T1 be a transition-system over F1 and T2 be a transition-system over
F2. Suppose the transition of T1 = the transition of T2 and x1, x2 ⇒T1

y1, y2. Then x1, x2 ⇒T2 y1, y2.



166 michał trybulec

(22) For every transition-system T over F such that x, u⇒T y, v there exists
w such that x,w →T y and u = w a v.

(23) For every transition-system T over F holds x, y →T z iff x, y ⇒T z, 〈〉E .
(24) For every transition-system T over F holds x, v →T y iff x, vaw ⇒T y, w.

(25) For every transition-system T over F such that x, u⇒T y, v holds x, ua

w ⇒T y, v
a w.

(26) For every transition-system T over F such that x, u⇒T y, v holds lenu ≥
len v.

(27) Let T be a transition-system over F . Suppose the transition of T is a
function. If x1, x2 ⇒T y1, z and x1, x2 ⇒T y2, z, then y1 = y2.

(28) For every transition-system T over F such that 〈〉E /∈ rng dom (the trans-
ition of T) holds x, z 6⇒T y, z.

(29) For every transition-system T over F such that 〈〉E /∈ rng dom (the trans-
ition of T) holds if x, u⇒T y, v, then lenu > len v.

(30) For every deterministic transition-system T over F such that x1, x2 ⇒T

y1, z1 and x1, x2 ⇒T y2, z2 holds y1 = y2 and z1 = z2.

5. Reduction Relation

In the sequel T is a non empty transition-system over F , s, t are elements
of T, and S is a subset of T.
Let us consider E, F , T. The functor ⇒T yielding a binary relation on (the

carrier of T)× Eω is defined as follows:
(Def. 4) 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T iff x1, x2 ⇒T y1, y2.

The following propositions are true:

(31) If 〈〈x, y〉〉 ∈ ⇒T, then there exist s, v, t, w such that x = 〈〈s, v〉〉 and
y = 〈〈t, w〉〉.

(32) Suppose 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T. Then x1, y1 ∈ T and x2, y2 ∈ Eω
and x1 ∈ domdom (the transition of T) and y1 ∈ rng (the transition of T).

(33) If x ∈ ⇒T, then there exist s, t, v, w such that x = 〈〈〈〈s, v〉〉, 〈〈t, w〉〉〉〉.
(34) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then ⇒T1 =⇒T2 .

(35) If 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T, then there exist v, w such that v = y2 and
x1, w →T y1 and x2 = w a v.

(36) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then there exists w such that x,w →T y and
u = w a v.

(37) x, y →T z iff 〈〈〈〈x, y〉〉, 〈〈z, 〈〉E〉〉〉〉 ∈ ⇒T.

(38) x, v →T y iff 〈〈〈〈x, v a w〉〉, 〈〈y, w〉〉〉〉 ∈ ⇒T.
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(39) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then 〈〈〈〈x, u a w〉〉, 〈〈y, v a w〉〉〉〉 ∈ ⇒T.

(40) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then lenu ≥ len v.
(41) If the transition of T is a function, then if 〈〈x, 〈〈y1, z〉〉〉〉, 〈〈x, 〈〈y2, z〉〉〉〉 ∈ ⇒T,

then y1 = y2.

(42) If 〈〉E /∈ rng dom (the transition of T), then if 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T,

then lenu > len v.

(43) If 〈〉E /∈ rng dom (the transition of T), then 〈〈〈〈x, z〉〉, 〈〈y, z〉〉〉〉 /∈ ⇒T.

(44) If T is deterministic, then if 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ ⇒T, then y1 = y2.

(45) If T is deterministic, then if 〈〈x, 〈〈y1, z1〉〉〉〉, 〈〈x, 〈〈y2, z2〉〉〉〉 ∈ ⇒T, then y1 =
y2 and z1 = z2.

(46) If T is deterministic, then ⇒T is function-like.

6. Reduction Sequences

Let us consider x, E. The functor dim2(x,E) yields an element of Eω and
is defined as follows:

(Def. 5) dim2(x,E) =

{
x2, if there exist y, u such that x = 〈〈y, u〉〉,
∅, otherwise.

Next we state a number of propositions:

(47) Let P be a reduction sequence w.r.t.⇒T and given k. If k, k+1 ∈ domP,
then there exist s, v, t, w such that P (k) = 〈〈s, v〉〉 and P (k + 1) = 〈〈t, w〉〉.

(48) Let P be a reduction sequence w.r.t.⇒T and given k. If k, k+1 ∈ domP,
then P (k) = 〈〈P (k)1, P (k)2〉〉 and P (k + 1) = 〈〈P (k + 1)1, P (k + 1)2〉〉.

(49) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP. Then
(i) P (k)1 ∈ T,

(ii) P (k)2 ∈ Eω,
(iii) P (k + 1)1 ∈ T,

(iv) P (k + 1)2 ∈ Eω,
(v) P (k)1 ∈ domdom (the transition of T), and
(vi) P (k + 1)1 ∈ rng (the transition of T).
(50) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then every reduction
sequence w.r.t. ⇒T1 is a reduction sequence w.r.t. ⇒T2 .

(51) Let P be a reduction sequence w.r.t. ⇒T. If there exist x, u such
that P (1) = 〈〈x, u〉〉, then for every k such that k ∈ domP holds
dim2(P (k), E) = P (k)2.

(52) Let P be a reduction sequence w.r.t. ⇒T. If P (lenP ) = 〈〈y, w〉〉, then for
every k such that k ∈ domP there exists u such that P (k)2 = u a w.
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(53) For every reduction sequence P w.r.t. ⇒T such that P (1) = 〈〈x, v〉〉 and
P (lenP ) = 〈〈y, w〉〉 there exists u such that v = u a w.

(54) Let P be a reduction sequence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and
P (lenP ) = 〈〈y, u〉〉, then for every k such that k ∈ domP holds P (k)2 = u.

(55) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP. Then there exist v, w such that v = P (k + 1)2 and P (k)1, w →T

P (k + 1)1 and P (k)2 = w a v.

(56) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP and P (k) = 〈〈x, u〉〉 and P (k+1) = 〈〈y, v〉〉. Then there exists w such
that x,w →T y and u = w a v.

(57) x, y →T z iff 〈〈〈x, y〉〉, 〈〈z, 〈〉E〉〉〉 is a reduction sequence w.r.t. ⇒T.

(58) x, v →T y iff 〈〈〈x, v a w〉〉, 〈〈y, w〉〉〉 is a reduction sequence w.r.t. ⇒T.

(59) For every reduction sequence P w.r.t. ⇒T such that P (1) = 〈〈x, v〉〉 and
P (lenP ) = 〈〈y, w〉〉 holds len v ≥ lenw.

(60) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and P (lenP ) = 〈〈y, u〉〉, then lenP = 1
and x = y.

(61) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T. If P (1)2 = P (lenP )2, then lenP = 1.

(62) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction
sequence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and P (lenP ) = 〈〈y, 〈〉E〉〉, then
lenP ≤ lenu+ 1.

(63) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t.⇒T. If P (1) = 〈〈x, 〈e〉〉〉 and P (lenP ) = 〈〈y, 〈〉E〉〉, then lenP = 2.

(64) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t.⇒T. If P (1) = 〈〈x, v〉〉 and P (lenP ) = 〈〈y, w〉〉, then len v > lenw
or lenP = 1 and x = y and v = w.

(65) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T and given k. If k, k+1 ∈ domP, then P (k)2 6= P (k + 1)2.

(66) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction
sequence w.r.t. ⇒T and given k, l. If k, l ∈ domP and k < l, then
P (k)2 6= P (l)2.

(67) Suppose T is deterministic. Let P , Q be reduction sequences w.r.t. ⇒T.
If P (1) = Q(1), then for every k such that k ∈ domP and k ∈ domQ
holds P (k) = Q(k).

(68) If T is deterministic, then for all reduction sequences P , Q w.r.t. ⇒T

such that P (1) = Q(1) and lenP = lenQ holds P = Q.

(69) Suppose T is deterministic. Let P , Q be reduction sequences w.r.t. ⇒T.
If P (1) = Q(1) and P (lenP )2 = Q(lenQ)2, then P = Q.
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7. Reductions

The following propositions are true:

(70) If ⇒T reduces 〈〈x, v〉〉 to 〈〈y, w〉〉, then there exists u such that v = u a w.

(71) If⇒T reduces 〈〈x, u〉〉 to 〈〈y, v〉〉, then⇒T reduces 〈〈x, uaw〉〉 to 〈〈y, vaw〉〉.
(72) If x, y →T z, then ⇒T reduces 〈〈x, y〉〉 to 〈〈z, 〈〉E〉〉.
(73) If x, v →T y, then ⇒T reduces 〈〈x, v a w〉〉 to 〈〈y, w〉〉.
(74) If x1, x2 ⇒T y1, y2, then ⇒T reduces 〈〈x1, x2〉〉 to 〈〈y1, y2〉〉.
(75) If ⇒T reduces 〈〈x, v〉〉 to 〈〈y, w〉〉, then len v ≥ lenw.
(76) If ⇒T reduces 〈〈x, w〉〉 to 〈〈y, v a w〉〉, then v = 〈〉E .
(77) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, v〉〉 to 〈〈y,
w〉〉, then len v > lenw or x = y and v = w.

(78) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, u〉〉 to 〈〈y,
u〉〉, then x = y.

(79) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, 〈e〉〉〉 to 〈〈y,
〈〉E〉〉, then 〈〈〈〈x, 〈e〉〉〉, 〈〈y, 〈〉E〉〉〉〉 ∈ ⇒T.

(80) If T is deterministic, then if ⇒T reduces x to 〈〈y1, z〉〉 and ⇒T reduces x
to 〈〈y2, z〉〉, then y1 = y2.

8. Transitions

Let us consider E, F , T, x1, x2, y1, y2. The predicate x1, x2 ⇒∗T y1, y2 is
defined as follows:

(Def. 6) ⇒T reduces 〈〈x1, x2〉〉 to 〈〈y1, y2〉〉.
We now state a number of propositions:

(81) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. If x1, x2 ⇒∗T1 y1, y2, then
x1, x2 ⇒∗T2 y1, y2.

(82) x, y ⇒∗T x, y.
(83) If x1, x2 ⇒∗T y1, y2 and y1, y2 ⇒∗T z1, z2, then x1, x2 ⇒∗T z1, z2.
(84) If x, y →T z, then x, y ⇒∗T z, 〈〉E .
(85) If x, v →T y, then x, v a w ⇒∗T y, w.
(86) If x, u⇒∗T y, v, then x, u a w ⇒∗T y, v a w.

(87) If x1, x2 ⇒T y1, y2, then x1, x2 ⇒∗T y1, y2.
(88) If x, v ⇒∗T y, w, then there exists u such that v = u a w.

(89) If x, v ⇒∗T y, w, then lenw ≤ len v.
(90) If x,w ⇒∗T y, v a w, then v = 〈〉E .
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(91) If 〈〉E /∈ rng dom (the transition of T), then x, u⇒∗T y, u iff x = y.
(92) If 〈〉E /∈ rng dom (the transition of T), then if x, 〈e〉 ⇒∗T y, 〈〉E , then
x, 〈e〉 ⇒T y, 〈〉E .

(93) If T is deterministic, then if x1, x2 ⇒∗T y1, z and x1, x2 ⇒∗T y2, z, then
y1 = y2.

9. Acceptance of Words

Let us consider E, F , T, x1, x2, y. The predicate x1, x2 ⇒∗T y is defined as
follows:

(Def. 7) x1, x2 ⇒∗T y, 〈〉E .
We now state several propositions:

(94) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2 and
the transition of T1 = the transition of T2. If x, y ⇒∗T1 z, then x, y ⇒

∗
T2
z.

(95) x, 〈〉E ⇒∗T x.
(96) If x, u⇒∗T y, then x, u a v ⇒∗T y, v.
(97) If x, y →T z, then x, y ⇒∗T z.
(98) If x1, x2 ⇒T y, 〈〉E , then x1, x2 ⇒∗T y.
(99) If x, u⇒∗T y and y, v ⇒∗T z, then x, u a v ⇒∗T z.
(100) If 〈〉E /∈ rng dom (the transition of T), then x, 〈〉E ⇒∗T y iff x = y.
(101) If 〈〉E /∈ rng dom (the transition of T), then if x, 〈e〉 ⇒∗T y, then x, 〈e〉 ⇒T

y, 〈〉E .
(102) If T is deterministic, then if x1, x2 ⇒∗T y1 and x1, x2 ⇒∗T y2, then y1 = y2.

10. Reachable States

Let us consider E, F , T, x, X. The functor x-succT(X) yields a subset of T
and is defined as follows:

(Def. 8) x-succT(X) = {s :
∨
t (t ∈ X ∧ t, x⇒∗T s)}.

The following propositions are true:

(103) s ∈ x-succT(X) iff there exists t such that t ∈ X and t, x⇒∗T s.
(104) If 〈〉E /∈ rng dom (the transition of T), then 〈〉E-succT(S) = S.
(105) Let T1 be a non empty transition-system over F1 and T2 be a non empty

transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then x-succT1(X) =
x-succT2(X).
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