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Summary. In the various branches of science, probability and randomness
provide us with useful theoretical frameworks. The Formalized Mathematics has
already published some articles concerning the probability: [23], [24], [25], and
[30]. In order to apply those articles, we shall give some theorems concerning the
probability and the real-valued random variables to prepare for further studies.
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The articles [12], [28], [3], [14], [1], [18], [27], [9], [29], [11], [4], [21], [10], [2], [5],
[6], [20], [25], [24], [30], [7], [16], [17], [19], [8], [15], [26], [13], and [22] provide
the notation and terminology for this paper.

1. Probability on Finite Set

One can prove the following four propositions:

(1) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
a ≤ f(x). Then R(a) ·M(E) ≤

∫
f�E dM.

(2) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
a ≤ f(x). Then R(a) ·M(E) ≤

∫
f�E dM.
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(3) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
f(x) ≤ a. Then

∫
f�E dM ≤ R(a) ·M(E).

(4) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
f(x) ≤ a. Then

∫
f�E dM ≤ R(a) ·M(E).

2. Random Variables

For simplicity, we follow the rules: O is a non empty set, r is a real number,
S is a σ-field of subsets of O, P is a probability on S, and E is a finite non
empty set.
Let E be a non empty set. We introduce the trivial σ-field of E as a synonym

of 2E . Then the trivial σ-field of E is a σ-field of subsets of E.
Next we state a number of propositions:

(5) Let O be a non empty finite set and f be a partial function from O to
R. Then there exists a finite sequence F of separated subsets of the trivial
σ-field of O and there exists a finite sequence s of elements of dom f such
that
dom f =

⋃
rngF and domF = dom s and s is one-to-one and rng s =

dom f and len s = dom f and for every natural number k such that k ∈
domF holds F (k) = {s(k)} and for every natural number n and for all
elements x, y of O such that n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).

(6) Let O be a non empty finite set and f be a partial function from O to
R. Then
(i) f is simple function in the trivial σ-field of O, and
(ii) dom f is an element of the trivial σ-field of O.

(7) Let O be a non empty finite set, M be a σ-measure on the trivial σ-
field of O, and f be a partial function from O to R. If dom f 6= ∅ and
M(dom f) < +∞, then f is integrable on M .

(8) Let O be a non empty finite set and f be a partial function from O to
R. Then there exists an element X of the trivial σ-field of O such that
dom f = X and f is measurable on X.

(9) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose M(O) < +∞ and
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s is one-to-one and rng s = O and len s = O. Then there exists a finite
sequence F of separated subsets of the trivial σ-field of O and there exists
a finite sequence a of elements of R such that
(i) dom f =

⋃
rngF,

(ii) dom a = dom s,
(iii) domF = dom s,
(iv) for every natural number k such that k ∈ domF holds F (k) = {s(k)},
and

(v) for every natural number n and for all elements x, y of O such that
n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).

(10) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose that
(i) M(O) < +∞,
(ii) lenx = O,
(iii) s is one-to-one,
(iv) rng s = O,
(v) len s = O, and
(vi) for every natural number n such that n ∈ domx holds x(n) =

R(f(s(n))) ·M({s(n)}).
Then

∫
f dM =

∑
x.

(11) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, and f be a function from O into R. Suppose M(O) < +∞. Then
there exists a finite sequence x of elements of R and there exists a finite
sequence s of elements of O such that
(i) lenx = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domx holds x(n) =

R(f(s(n))) ·M({s(n)}), and
(vi)

∫
f dM =

∑
x.

(12) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose that
(i) lenx = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O, and
(v) for every natural number n such that n ∈ domx holds x(n) = f(s(n)) ·
P ({s(n)}).
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Then
∫
f dP2MP =

∑
x.

(13) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and f be a function from O into R. Then there exists a finite sequence
F of elements of R and there exists a finite sequence s of elements of O
such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = f(s(n)) ·
P ({s(n)}), and

(vi)
∫
f dP2MP =

∑
F.

(14) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-increasing. Then there exists an element N of N such
that for every element m of N such that N ≤ m holds A(N) = A(m).

(15) Let E be a finite non empty set and A be a sequence of subsets of E.
SupposeA is non-increasing. Then there exists an elementN of N such that
for every element m of N such that N ≤ m holds IntersectionA = A(m).

(16) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-decreasing. Then there exists an element N of N such
that for every element m of N such that N ≤ m holds A(N) = A(m).

(17) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-decreasing. Then there exists a natural number N such
that for every natural number m such that N ≤ m holds

⋃
A = A(m).

Let us consider E. The trivial probability of E yielding a probability on the
trivial σ-field of E is defined as follows:

(Def. 1) For every event A1 of E holds (the trivial probability of E)(A1) = P(A1).

Let us consider O, S. A function from O into R is said to be a real-valued
random variable of S if:

(Def. 2) There exists an element X of S such that X = O and it is measurable
on X.

In the sequel f , g are real-valued random variables of S.
Next we state the proposition

(18) f + g is a real-valued random variable of S.

Let us consider O, S, f , g. Then f + g is a real-valued random variable of S.
We now state the proposition

(19) f − g is a real-valued random variable of S.
Let us consider O, S, f , g. Then f − g is a real-valued random variable of S.
Next we state the proposition

(20) For every real number r holds r f is a real-valued random variable of S.
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Let us consider O, S, f and let r be a real number. Then r f is a real-valued
random variable of S.
Next we state two propositions:

(21) For all partial functions f , g from O to R holds R(f)R(g) = R(f g).
(22) f g is a real-valued random variable of S.

Let us consider O, S, f , g. Then f g is a real-valued random variable of S.
Next we state two propositions:

(23) For every real number r such that 0 ≤ r and f is non-negative holds f r
is a real-valued random variable of S.

(24) |f | is a real-valued random variable of S.
Let us consider O, S, f . Then |f | is a real-valued random variable of S.
We now state the proposition

(25) For every real number r such that 0 ≤ r holds |f |r is a real-valued
random variable of S.

Let us consider O, S, f , P . We say that f is integrable on P if and only if:

(Def. 3) f is integrable on P2MP.

Let us consider O, S, P and let f be a real-valued random variable of S. Let
us assume that f is integrable on P . The functor EP {f} yielding an element of
R is defined as follows:
(Def. 4) EP {f} =

∫
f dP2MP.

One can prove the following propositions:

(26) If f is integrable on P and g is integrable on P , then EP {f + g} =
EP {f}+ EP {g}.

(27) If f is integrable on P , then EP {r f} = r · EP {f}.
(28) If f is integrable on P and g is integrable on P , then EP {f − g} =
EP {f} − EP {g}.

(29) For every non empty finite set O holds every function from O into R is
a real-valued random variable of the trivial σ-field of O.

(30) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then X is integrable on P .

(31) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, X be a real-valued random variable of the trivial σ-field of O, F be
a finite sequence of elements of R, and s be a finite sequence of elements
of O. Suppose that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O, and
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(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}).
Then EP {X} =

∑
F.

(32) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then there exists a finite sequence F of elements of R and there exists a
finite sequence s of elements of O such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}), and

(vi) EP {X} =
∑
F.

(33) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then there exists a finite sequence F of elements of R and there exists a
finite sequence s of elements of O such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}), and

(vi) EP {X} =
∑
F.

(34) Let O be a non empty finite set, X be a real-valued random variable of
the trivial σ-field of O, G be a finite sequence of elements of R, and s be
a finite sequence of elements of O. Suppose lenG = O and s is one-to-one
and rng s = O and len s = O and for every natural number n such that
n ∈ domG holds G(n) = X(s(n)). Then Ethe trivial probability of O{X} =∑
G

O
.

(35) Let O be a non empty finite set and X be a real-valued random variable
of the trivial σ-field of O. Then there exists a finite sequence G of elements
of R and there exists a finite sequence s of elements of O such that
(i) lenG = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domG holds G(n) = X(s(n)),
and
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(vi) Ethe trivial probability of O{X} =
∑
G

O
.

(36) Let X be a real-valued random variable of S. Suppose 0 < r and X is
non-negative and X is integrable on P . Then P ({t ∈ O: r ≤ X(t)}) ≤
EP {X}
r .
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