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Summary. In this article, we formalized Lebesgue’s Convergence theorem
of complex-valued function. We proved Lebesgue’s Convergence Theorem of real-
valued function using the theorem of extensional real-valued function. Then ap-
plying the former theorem to real part and imaginary part of complex-valued
functional sequences, we proved Lebesgue’s Convergence Theorem of complex-
valued function. We also defined partial sums of real-valued functional sequences
and complex-valued functional sequences and showed their properties. In addi-
tion, we proved properties of complex-valued simple functions.
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The articles [24], [1], [4], [12], [25], [5], [26], [6], [7], [18], [19], [2], [8], [14], [13],
[20], [21], [3], [11], [22], [15], [10], [16], [9], [17], and [23] provide the notation
and terminology for this paper.

1. Partial Sums of Real-Valued Functional Sequences

For simplicity, we use the following convention: X is a non empty set, S is
a σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F is a
sequence of partial functions from X into R, f is a partial function from X to
R, s is a sequence of real numbers, n, m are natural numbers, x is an element
of X, and z, D are sets.
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Let X, Y be sets, let F be a sequence of partial functions from X into Y ,
and let D be a set. The functor F � D yielding a sequence of partial functions
from X into Y is defined by:

(Def. 1) For every natural number n holds (F � D)(n) = F (n)�D.

One can prove the following propositions:

(1) If x ∈ D and F#x is convergent, then (F � D)#x is convergent.

(2) Let X, Y , D be sets and F be a sequence of partial functions from X
into Y . If F has the same dom, then F � D has the same dom.

(3) If D ⊆ domF (0) and for every element x of X such that x ∈ D holds
F#x is convergent, then limF �D = lim(F � D).

(4) Suppose F has the same dom and E ⊆ domF (0) and for every natural
numberm holds F (m) is measurable on E. Then (F � E)(n) is measurable
on E.

(5) (
∑κ
α=0(R(s))(α))κ∈N = R((

∑κ
α=0 s(α))κ∈N).

(6) Suppose that for every element x of X such that x ∈ E holds F#x
is summable. Let x be an element of X. If x ∈ E, then (F � E)#x is
summable.

Let X be a non empty set and let F be a sequence of partial functions from
X into R. The functor (

∑κ
α=0 F (α))κ∈N yields a sequence of partial functions

from X into R and is defined by:
(Def. 2) (

∑κ
α=0 F (α))κ∈N(0) = F (0) and for every element n of N holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

One can prove the following propositions:

(7) (
∑κ
α=0(R(F ))(α))κ∈N = R((

∑κ
α=0 F (α))κ∈N).

(8) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(9) R(F ) is additive.
(10) dom(

∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges over elements of N:

k ≤ n}.
(11) If F has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) = domF (0).

(12) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(13) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is convergent.

(14) If F has the same dom and dom f ⊆ domF (0) and x ∈ dom f and
f(x) =

∑
(F#x), then f(x) = lim((

∑κ
α=0 F (α))κ∈N#x).

(15) If for every natural number m holds F (m) is simple function in S, then
(
∑κ
α=0 F (α))κ∈N(n) is simple function in S.
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(16) If for every natural number n holds F (n) is measurable on E, then
(
∑κ
α=0 F (α))κ∈N(m) is measurable on E.

(17) Let X be a non empty set and F be a sequence of partial functions from
X into R. If F has the same dom, then (

∑κ
α=0 F (α))κ∈N has the same

dom.

(18) Suppose that
(i) domF (0) = E,
(ii) F has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then lim((

∑κ
α=0 F (α))κ∈N) is measurable on E.

(19) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

2. Partial Sums of Complex-Valued Functional Sequences

In the sequel F denotes a sequence of partial functions from X into C, f
denotes a partial function from X to C, and A denotes a set.
We now state several propositions:

(20) <(f)�A = <(f�A) and =(f)�A = =(f�A).
(21) <(F � D) = <(F ) � D.
(22) =(F � D) = =(F ) � D.
(23) If F has the same dom and D ⊆ domF (0) and x ∈ D, then if F#x is
convergent, then (F � D)#x is convergent.

(24) F has the same dom iff <(F ) has the same dom.
(25) <(F ) has the same dom iff =(F ) has the same dom.
(26) If F has the same dom and D = domF (0) and for every element x of X
such that x ∈ D holds F#x is convergent, then limF �D = lim(F � D).

(27) Suppose F has the same dom and E ⊆ domF (0) and for every natural
numberm holds F (m) is measurable on E. Then (F � E)(n) is measurable
on E.

(28) Suppose E ⊆ domF (0) and F has the same dom and for every element
x of X such that x ∈ E holds F#x is summable. Let x be an element of
X. If x ∈ E, then (F � E)#x is summable.

Let X be a non empty set and let F be a sequence of partial functions from
X into C. The functor (

∑κ
α=0 F (α))κ∈N yielding a sequence of partial functions

from X into C is defined by:
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(Def. 3) (
∑κ
α=0 F (α))κ∈N(0) = F (0) and for every natural number n holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

The following propositions are true:

(29) (
∑κ
α=0<(F )(α))κ∈N = <((

∑κ
α=0 F (α))κ, (

∑κ
α=0=(F )(α))κ∈N =

=((
∑κ
α=0 F (α))κ∈N).

(30) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(31) dom(
∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges over elements of N:

k ≤ n}.
(32) If F has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) = domF (0).

(33) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(34) If F has the same dom, then (
∑κ
α=0 F (α))κ∈N has the same dom.

(35) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is convergent.

(36) If F has the same dom and dom f ⊆ domF (0) and x ∈ dom f and F#x
is summable and f(x) =

∑
(F#x), then f(x) = lim((

∑κ
α=0 F (α))κ∈N#x).

(37) If for every natural number m holds F (m) is simple function in S, then
(
∑κ
α=0 F (α))κ∈N(n) is simple function in S.

(38) If for every natural number n holds F (n) is measurable on E, then
(
∑κ
α=0 F (α))κ∈N(m) is measurable on E.

(39) Suppose that
(i) domF (0) = E,
(ii) F has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then lim((

∑κ
α=0 F (α))κ∈N) is measurable on E.

(40) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

3. Selected Properties of Complex-Valued Simple Functions

In the sequel f , g denote partial functions from X to C and A denotes an
element of S.
Next we state several propositions:

(41) If f is simple function in S, then f is measurable on A.

(42) If f is simple function in S, then f�A is simple function in S.



lebesgue’s convergence theorem . . . 141

(43) If f is simple function in S, then dom f is an element of S.

(44) If f is simple function in S and g is simple function in S, then f + g is
simple function in S.

(45) For every complex number c such that f is simple function in S holds
c f is simple function in S.

4. Lebesgue’s Convergence Theorem of Complex-Valued Function

In the sequel F denotes a sequence of partial functions from X into R with
the same dom and P denotes a partial function from X to R.
The following proposition is true

(46) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

In the sequel F denotes a sequence of partial functions from X into R with
the same dom and f , P denote partial functions from X to R.
One can prove the following propositions:

(47) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

(48) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M , and
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a sequence I of real numbers such that
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(vi) for every natural number n holds I(n) =
∫
F (n) dM, and

(vii) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

Let X be a set and let F be a sequence of partial functions from X into
R. We say that F is uniformly bounded if and only if the condition (Def. 4) is
satisfied.

(Def. 4) There exists a real number K such that for every natural number n and
for every element x of X if x ∈ domF (0), then |F (n)(x)| ≤ K.
Next we state the proposition

(49) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

limF dM.

Let X be a set, let F be a sequence of partial functions from X into R, and
let f be a partial function from X to R. We say that F is uniformly convergent
to f if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every element x of X such
that n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
We now state the proposition

(50) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

f dM.
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In the sequel F denotes a sequence of partial functions from X into C with
the same dom and f denotes a partial function from X to C.
The following two propositions are true:

(51) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

(52) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M , and
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a complex sequence I such that

(vi) for every natural number n holds I(n) =
∫
F (n) dM, and

(vii) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

Let X be a set and let F be a sequence of partial functions from X into
C. We say that F is uniformly bounded if and only if the condition (Def. 6) is
satisfied.

(Def. 6) There exists a real number K such that for every natural number n and
for every element x of X if x ∈ domF (0), then |F (n)(x)| ≤ K.
The following proposition is true

(53) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a complex sequence I such that for every natural number
n holds I(n) =

∫
F (n) dM and I is convergent and lim I =

∫
limF dM.
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Let X be a set, let F be a sequence of partial functions from X into C, and
let f be a partial function from X to C. We say that F is uniformly convergent
to f if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every element x of X such
that n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
We now state the proposition

(54) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a complex sequence I such that for every natural number
n holds I(n) =

∫
F (n) dM and I is convergent and lim I =

∫
f dM.
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