Riemann Integral of Functions from \mathbb{R} into \mathcal{R}^n

Keiichi Miyajima Ibaraki University Hitachi, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article, we define the Riemann Integral of functions from \mathbb{R} into \mathbb{R}^n , and prove the linearity of this operator. The presented method is based on [21].

MML identifier: INTEGR15, version: 7.11.02 4.125.1059

The articles [22], [1], [23], [5], [6], [15], [20], [24], [7], [17], [16], [2], [4], [3], [8], [18], [9], [12], [10], [14], [13], [19], and [11] provide the notation and terminology for this paper.

1. Preliminaries

Let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R} , let S be a non empty Division of A, and let D be an element of S. A finite sequence of elements of \mathbb{R} is said to be a middle volume of f and D if it satisfies the conditions (Def. 1).

- (Def. 1)(i) $\operatorname{len} it = \operatorname{len} D$, and
 - (ii) for every natural number i such that $i \in \text{dom } D$ there exists an element r of \mathbb{R} such that $r \in \text{rng}(f \mid \text{divset}(D, i))$ and $\text{it}(i) = r \cdot \text{vol}(\text{divset}(D, i))$.

Let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R} , let S be a non empty Division of A, let D be an element of S, and let F be a middle volume of f and D. The functor middle_sum(f, F) yielding a real number is defined as follows:

(Def. 2) middle_sum $(f, F) = \sum F$.

We now state four propositions:

- (1) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , S be a non empty Division of A, D be an element of S, and F be a middle volume of f and D. If $f \upharpoonright A$ is lower bounded, then lower_sum $(f, D) \le$ middle_sum(f, F).
- (2) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , S be a non empty Division of A, D be an element of S, and F be a middle volume of f and D. If $f \upharpoonright A$ is upper bounded, then middle_sum $(f, F) \le \text{upper_sum}(f, D)$.
- (3) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , S be a non empty Division of A, D be an element of S, and e be a real number. Suppose $f \upharpoonright A$ is lower bounded and 0 < e. Then there exists a middle volume F of f and D such that middle_sum $(f, F) \leq \text{lower_sum}(f, D) + e$.
- (4) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , S be a non empty Division of A, D be an element of S, and e be a real number. Suppose $f \upharpoonright A$ is upper bounded and 0 < e. Then there exists a middle volume F of f and D such that upper_sum $(f, D) e \le \text{middle_sum}(f, F)$.

Let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R} , and let T be a DivSequence of A. A function from \mathbb{N} into \mathbb{R}^* is said to be a middle volume sequence of f and T if:

(Def. 3) For every element k of \mathbb{N} holds it(k) is a middle volume of f and T(k). Let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R} , let T be a DivSequence of A, let S be a middle volume sequence of f and T, and let k be an element of \mathbb{N} . Then S(k) is a middle volume of f and T(k).

Let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R} , let T be a DivSequence of A, and let S be a middle volume sequence of f and T. The functor middle_sum(f,S) yields a sequence of real numbers and is defined by:

- (Def. 4) For every element i of \mathbb{N} holds (middle_sum(f, S)) $(i) = \text{middle_sum}(f, S(i))$. We now state several propositions:
 - (5) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , T be a DivSequence of A, S be a middle volume sequence of f and T, and i be an element of \mathbb{N} . If $f \upharpoonright A$ is lower bounded, then $(\text{lower_sum}(f,T))(i) \le (\text{middle_sum}(f,S))(i)$.
 - (6) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , T be a DivSequence of A, S be a middle volume sequence of f and T, and i be an element of \mathbb{N} . If $f \upharpoonright A$ is upper bounded, then $(\text{middle_sum}(f, S))(i) \leq (\text{upper_sum}(f, T))(i)$.
 - (7) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , T be a DivSequence of A, and e be an element of \mathbb{R} . Suppose 0 < e and $f \upharpoonright A$ is lower bounded. Then there exists a middle volume sequence S of

f and T such that for every element i of \mathbb{N} holds (middle_sum(f,S)) $(i) \leq (\text{lower_sum}(f,T))(i) + e$.

- (8) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , T be a DivSequence of A, and e be an element of \mathbb{R} . Suppose 0 < e and $f \upharpoonright A$ is upper bounded. Then there exists a middle volume sequence S of f and T such that for every element i of \mathbb{N} holds (upper_sum(f,T)) $(i) e \le (\text{middle_sum}(f,S))(i)$.
- (9) Let A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathbb{R} , T be a DivSequence of A, and S be a middle volume sequence of f and T. Suppose f is bounded and f is integrable on A and δ_T is convergent and $\lim_{N \to \infty} (\delta_T) = 0$. Then middle_sum(f, S) is convergent and $\lim_{N \to \infty} (f, S) = \inf_{N \to \infty} f$.
- (10) Let A be a closed-interval subset of \mathbb{R} and f be a function from A into \mathbb{R} . Suppose f is bounded. Then f is integrable on A if and only if there exists a real number I such that for every DivSequence T of A and for every middle volume sequence S of f and T such that δ_T is convergent and $\lim(\delta_T) = 0$ holds middle_sum(f, S) is convergent and $\lim \min \text{didle_sum}(f, S) = I$.

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R}^n , let S be a non empty Division of A, and let D be an element of S. A finite sequence of elements of \mathbb{R}^n is said to be a middle volume of f and D if it satisfies the conditions (Def. 5).

(Def. 5)(i) $\operatorname{len} it = \operatorname{len} D$, and

(ii) for every natural number i such that $i \in \text{dom } D$ there exists an element r of \mathbb{R}^n such that $r \in \text{rng}(f \mid \text{divset}(D, i))$ and $\text{it}(i) = \text{vol}(\text{divset}(D, i)) \cdot r$.

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R}^n , let S be a non empty Division of A, let D be an element of S, and let F be a middle volume of f and D. The functor middle_sum(f, F) yielding an element of \mathbb{R}^n is defined by the condition (Def. 6).

(Def. 6) Let i be an element of \mathbb{N} . Suppose $i \in \operatorname{Seg} n$. Then there exists a finite sequence F_1 of elements of \mathbb{R} such that $F_1 = \operatorname{proj}(i, n) \cdot F$ and $(\operatorname{middle_sum}(f, F))(i) = \sum F_1$.

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R}^n , and let T be a DivSequence of A. A function from \mathbb{N} into $(\mathbb{R}^n)^*$ is said to be a middle volume sequence of f and T if:

(Def. 7) For every element k of \mathbb{N} holds it(k) is a middle volume of f and T(k).

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , let f be a function from A into \mathbb{R}^n , let T be a DivSequence of A, let S be a middle volume sequence of f and T, and let K be an element of \mathbb{N} . Then S(K) is a middle volume of K and K

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , let f be a

function from A into \mathbb{R}^n , let T be a DivSequence of A, and let S be a middle volume sequence of f and T. The functor middle_sum(f, S) yields a sequence of $\langle \mathcal{E}^n, \| \cdot \| \rangle$ and is defined as follows:

- (Def. 8) For every element i of \mathbb{N} holds (middle_sum(f, S)) $(i) = \text{middle_sum}(f, S(i))$. Let n be an element of \mathbb{N} , let Z be a non empty set, and let f, g be partial functions from Z to \mathcal{R}^n . The functor f + g yielding a partial function from Z to \mathcal{R}^n is defined by:
- (Def. 9) $\operatorname{dom}(f+g) = \operatorname{dom} f \cap \operatorname{dom} g$ and for every element c of Z such that $c \in \operatorname{dom}(f+g)$ holds $(f+g)_c = f_c + g_c$.

The functor f - g yielding a partial function from Z to \mathbb{R}^n is defined as follows:

(Def. 10) $\operatorname{dom}(f-g) = \operatorname{dom} f \cap \operatorname{dom} g$ and for every element c of Z such that $c \in \operatorname{dom}(f-g)$ holds $(f-g)_c = f_c - g_c$.

Let n be an element of \mathbb{N} , let r be a real number, let Z be a non empty set, and let f be a partial function from Z to \mathbb{R}^n . The functor r f yielding a partial function from Z to \mathbb{R}^n is defined as follows:

- (Def. 11) $\operatorname{dom}(r f) = \operatorname{dom} f$ and for every element c of Z such that $c \in \operatorname{dom}(r f)$ holds $(r f)_c = r \cdot f_c$.
 - 2. Definition of Riemann Integral of Functions from \mathbb{R} into \mathcal{R}^n

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , and let f be a function from A into \mathbb{R}^n . We say that f is bounded if and only if:

- (Def. 12) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\operatorname{proj}(i, n) \cdot f$ is bounded. Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , and let f be a function from A into \mathbb{R}^n . We say that f is integrable if and only if:
- (Def. 13) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\operatorname{proj}(i, n) \cdot f$ is integrable on A.

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , and let f be a function from A into \mathbb{R}^n . The functor integral f yielding an element of \mathbb{R}^n is defined by:

(Def. 14) domintegral $f = \operatorname{Seg} n$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds (integral f) $(i) = \operatorname{integral} \operatorname{proj}(i, n) \cdot f$.

One can prove the following two propositions:

(11) Let n be an element of \mathbb{N} , A be a closed-interval subset of \mathbb{R} , f be a function from A into \mathcal{R}^n , T be a DivSequence of A, and S be a middle volume sequence of f and T. Suppose f is bounded and integrable and δ_T is convergent and $\lim_{N \to \infty} (f, S) = 0$. Then middle_sum(f, S) = 0.

(12) Let n be an element of \mathbb{N} , A be a closed-interval subset of \mathbb{R} , and f be a function from A into \mathbb{R}^n . Suppose f is bounded. Then f is integrable if and only if there exists an element I of \mathbb{R}^n such that for every DivSequence T of A and for every middle volume sequence S of f and T such that δ_T is convergent and $\lim(\delta_T) = 0$ holds middle_sum(f, S) is convergent and $\lim \min \operatorname{didle_sum}(f, S) = I$.

Let n be an element of \mathbb{N} and let f be a partial function from \mathbb{R} to \mathcal{R}^n . We say that f is bounded if and only if:

- (Def. 15) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\operatorname{proj}(i, n) \cdot f$ is bounded. Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , and let f be a partial function from \mathbb{R} to \mathcal{R}^n . We say that f is integrable on A if and only if:
- (Def. 16) For every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $\operatorname{proj}(i, n) \cdot f$ is integrable on A.

Let n be an element of \mathbb{N} , let A be a closed-interval subset of \mathbb{R} , and let f be a partial function from \mathbb{R} to \mathcal{R}^n . The functor $\int_A f(x)dx$ yields an element of \mathcal{R}^n and is defined by:

(Def. 17) $\operatorname{dom} \int_A f(x) dx = \operatorname{Seg} n$ and for every element i of $\mathbb N$ such that $i \in \operatorname{Seg} n$ holds $(\int_A f(x) dx)(i) = \int_A (\operatorname{proj}(i,n) \cdot f)(x) dx$.

The following two propositions are true:

- (13) Let n be an element of \mathbb{N} , A be a closed-interval subset of \mathbb{R} , f be a partial function from \mathbb{R} to \mathcal{R}^n , and g be a function from A into \mathcal{R}^n . Suppose $f \upharpoonright A = g$. Then f is integrable on A if and only if g is integrable.
- (14) Let n be an element of \mathbb{N} , A be a closed-interval subset of \mathbb{R} , f be a partial function from \mathbb{R} to \mathcal{R}^n , and g be a function from A into \mathcal{R}^n . If $f \upharpoonright A = g$, then $\int_A f(x) dx = \operatorname{integral} g$.

Let a, b be real numbers, let n be an element of \mathbb{N} , and let f be a partial function from \mathbb{R} to \mathcal{R}^n . The functor $\int\limits_a^b f(x)dx$ yielding an element of \mathcal{R}^n is defined as follows:

(Def. 18) $\operatorname{dom} \int_{a}^{b} f(x)dx = \operatorname{Seg} n$ and for every element i of \mathbb{N} such that $i \in \operatorname{Seg} n$ holds $(\int_{a}^{b} f(x)dx)(i) = \int_{a}^{b} (\operatorname{proj}(i,n) \cdot f)(x)dx$.

3. Linearity of Integration Operator

We now state several propositions:

- (15) Let n be an element of \mathbb{N} , f_1 , f_2 be partial functions from \mathbb{R} to \mathcal{R}^n , and i be an element of \mathbb{N} . If $i \in \operatorname{Seg} n$, then $\operatorname{proj}(i,n) \cdot (f_1 + f_2) = \operatorname{proj}(i,n) \cdot f_1 + \operatorname{proj}(i,n) \cdot f_2$ and $\operatorname{proj}(i,n) \cdot (f_1 f_2) = \operatorname{proj}(i,n) \cdot f_1 \operatorname{proj}(i,n) \cdot f_2$.
- (16) Let n be an element of \mathbb{N} , r be a real number, f be a partial function from \mathbb{R} to \mathcal{R}^n , and i be an element of \mathbb{N} . If $i \in \operatorname{Seg} n$, then $\operatorname{proj}(i,n) \cdot (r f) = r (\operatorname{proj}(i,n) \cdot f)$.
- (17) Let n be an element of \mathbb{N} , A be a closed-interval subset of \mathbb{R} , and f_1 , f_2 be partial functions from \mathbb{R} to \mathcal{R}^n . Suppose f_1 is integrable on A and f_2 is integrable on A and $A \subseteq \text{dom } f_1$ and $A \subseteq \text{dom } f_2$ and $f_1 \upharpoonright A$ is bounded and $f_2 \upharpoonright A$ is bounded. Then $f_1 + f_2$ is integrable on A and $f_1 f_2$ is integrable on A and $\int_A (f_1 + f_2)(x) dx = \int_A f_1(x) dx + \int_A f_2(x) dx$ and $\int_A (f_1 f_2)(x) dx = \int_A f_1(x) dx \int_A f_2(x) dx.$
- (18) Let n be an element of \mathbb{N} , r be a real number, A be a closed-interval subset of \mathbb{R} , and f be a partial function from \mathbb{R} to \mathcal{R}^n . Suppose $A \subseteq \text{dom } f$ and f is integrable on A and $f \upharpoonright A$ is bounded. Then r f is integrable on A and $\int_A (r f)(x) dx = r \cdot \int_A f(x) dx$.
- (19) Let n be an element of \mathbb{N} , f be a partial function from \mathbb{R} to \mathcal{R}^n , A be a closed-interval subset of \mathbb{R} , and a, b be real numbers. If A = [a, b], then $\int_A f(x) dx = \int_a^b f(x) dx.$
- (20) Let n be an element of \mathbb{N} , f be a partial function from \mathbb{R} to \mathbb{R}^n , A be a closed-interval subset of \mathbb{R} , and a, b be real numbers. If A = [b, a], then $-\int_A f(x)dx = \int_a^b f(x)dx.$

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93–102, 1999.
- [11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rⁿ. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
 [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for
- [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.
- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191–196, 2001.
- [15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [16] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [19] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
- [20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
- [21] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.
- [22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received May 5, 2009