The Cauchy-Riemann Differential Equations of Complex Functions

Hiroshi Yamazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan Chanapat Pacharapokin Shinshu University Nagano, Japan

Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. In this article we prove Cauchy-Riemann differential equations of complex functions. These theorems give necessary and sufficient condition for differentiable function.

MML identifier: CFDIFF_2, version: 7.11.02 4.125.1059

The articles [20], [21], [6], [7], [22], [8], [3], [1], [4], [14], [13], [19], [16], [9], [2], [5], [10], [17], [11], [18], [12], and [15] provide the notation and terminology for this paper.

Let f be a partial function from \mathbb{C} to \mathbb{C} . The functor $\Re(f)$ yielding a partial function from \mathbb{C} to \mathbb{R} is defined as follows:

(Def. 1) dom $f = \operatorname{dom} \Re(f)$ and for every complex number z such that $z \in \operatorname{dom} \Re(f)$ holds $\Re(f)(z) = \Re(f_z)$.

Let f be a partial function from \mathbb{C} to \mathbb{C} . The functor $\Im(f)$ yields a partial function from \mathbb{C} to \mathbb{R} and is defined as follows:

(Def. 2) dom $f = \operatorname{dom} \mathfrak{T}(f)$ and for every complex number z such that $z \in \operatorname{dom} \mathfrak{T}(f)$ holds $\mathfrak{T}(f)(z) = \mathfrak{T}(f_z)$.

One can prove the following propositions:

(1) For every partial function f from \mathbb{C} to \mathbb{C} such that f is total holds dom $\Re(f) = \mathbb{C}$ and dom $\Im(f) = \mathbb{C}$.

C 2009 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

HIROSHI YAMAZAKI et al.

- (2) Let f be a partial function from \mathbb{C} to \mathbb{C} , u, v be partial functions from \mathcal{R}^2 to \mathbb{R} , z_0 be a complex number, x_0, y_0 be real numbers, and x_1 be an element of \mathcal{R}^2 . Suppose that
- (i) for all real numbers x, y such that $x + y \cdot i \in \text{dom } f$ holds $\langle x, y \rangle \in \text{dom } u$ and $u(\langle x, y \rangle) = \Re(f)(x + y \cdot i)$,
- (ii) for all real numbers x, y such that $x + y \cdot i \in \text{dom } f$ holds $\langle x, y \rangle \in \text{dom } v$ and $v(\langle x, y \rangle) = \Im(f)(x + y \cdot i)$,
- $(\text{iii}) \quad z_0 = x_0 + y_0 \cdot i,$
- (iv) $x_1 = \langle x_0, y_0 \rangle$, and
- (v) f is differentiable in z_0 . Then
- (vi) u is partially differentiable in x_1 w.r.t. coordinate 1 and partially differentiable in x_1 w.r.t. coordinate 2,
- (vii) v is partially differentiable in x_1 w.r.t. coordinate 1 and partially differentiable in x_1 w.r.t. coordinate 2,
- (viii) $\Re(f'(z_0)) = \operatorname{partdiff}(u, x_1, 1),$
 - (ix) $\Re(f'(z_0)) = \operatorname{partdiff}(v, x_1, 2),$
 - (x) $\Im(f'(z_0)) = -\text{partdiff}(u, x_1, 2)$, and
 - (xi) $\Im(f'(z_0)) = \operatorname{partdiff}(v, x_1, 1).$
 - (3) For every sequence s of real numbers holds s is convergent and $\lim s = 0$ iff |s| is convergent and $\lim |s| = 0$.
 - (4) Let X be a real normed space and s be a sequence of X. Then s is convergent and $\lim s = 0_X$ if and only if ||s|| is convergent and $\lim ||s|| = 0$.
 - (5) Let u be a partial function from \mathcal{R}^2 to \mathbb{R} , x_0 , y_0 be real numbers, and x_1 be an element of \mathcal{R}^2 . Suppose $x_1 = \langle x_0, y_0 \rangle$ and $\langle u \rangle$ is differentiable in x_1 . Then
 - (i) u is partially differentiable in x_1 w.r.t. coordinate 1 and partially differentiable in x_1 w.r.t. coordinate 2,
 - (ii) $\langle \text{partdiff}(u, x_1, 1) \rangle = \langle u \rangle'(x_1)(\langle 1, 0 \rangle), \text{ and}$
 - (iii) $\langle \text{partdiff}(u, x_1, 2) \rangle = \langle u \rangle'(x_1)(\langle 0, 1 \rangle).$
 - (6) Let f be a partial function from C to C, u, v be partial functions from R² to R, z₀ be a complex number, x₀, y₀ be real numbers, and x₁ be an element of R². Suppose that for all real numbers x, y such that ⟨x, y⟩ ∈ dom v holds x+y·i ∈ dom f and for all real numbers x, y such that x+y·i ∈ dom f holds ⟨x, y⟩ ∈ dom u and u(⟨x, y⟩) = ℜ(f)(x+y·i) and for all real numbers x, y such that x+y·i ∈ dom f holds ⟨x, y⟩ ∈ dom v holds and z₀ = x₀ + y₀ · i and x₁ = ⟨x₀, y₀⟩ and ⟨u⟩ is differentiable in x₁ and ⟨v⟩ is differentiable in x₁ and partdiff(u, x₁, 2) = -partdiff(v, x₁, 1). Then f is differentiable in z₀ and u is partially differentiable in x₁ w.r.t. coordinate 2 and v is partially differentiable in

148

 x_1 w.r.t. coordinate 1 and partially differentiable in x_1 w.r.t. coordinate 2 and $\Re(f'(z_0)) = \text{partdiff}(u, x_1, 1)$ and $\Re(f'(z_0)) = \text{partdiff}(v, x_1, 2)$ and $\Im(f'(z_0)) = -\text{partdiff}(u, x_1, 2)$ and $\Im(f'(z_0)) = \text{partdiff}(v, x_1, 1)$.

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661–668, 1990.
- [10] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
- [11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.
- [12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rⁿ. Formalized Mathematics, 15(2):65–72, 2007, doi:10.2478/v10037-007-0008-5.
 [13] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematical Ma
- Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
- [14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [15] Chanapat Pacharapokin, Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Complex function differentiability. *Formalized Mathematics*, 17(2):67–72, 2009, doi: 10.2478/v10037-009-0007-9.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
- [18] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.
- [19] Wojciech A. Trybulec. Vectors in real linear space. *Formalized Mathematics*, 1(2):291–296, 1990.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received April 7, 2009