Complex Function Differentiability

Chanapat Pacharapokin Shinshu University Nagano, Japan Hiroshi Yamazaki Shinshu University Nagano, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. For a complex valued function defined on its domain in complex numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential complex functions are shown.

MML identifier: CFDIFF_1, version: 7.11.01 4.117.1046

The articles [17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10], [1], [14], [15], and [13] provide the notation and terminology for this paper.

For simplicity, we use the following convention: k, n, m denote elements of \mathbb{N} , X denotes a set, s_1 , s_2 denote complex sequences, Y denotes a subset of \mathbb{C} , f, f_1 , f_2 denote partial functions from \mathbb{C} to \mathbb{C} , r denotes a real number, a, a_1 , b, x, x_0 , z, z_0 denote complex numbers, and N_1 denotes an increasing sequence of naturals.

Let I be a complex sequence. We say that I is convergent to 0 if and only if: (Def. 1) I is non-zero and convergent and $\lim I = 0$.

We now state four propositions:

- (1) Let r_1 be a sequence of real numbers and c_1 be a complex sequence. If $r_1 = c_1$ and r_1 is convergent, then c_1 is convergent.
- (2) If 0 < r and for every n holds $s_1(n) = \frac{1}{n+r}$, then s_1 is convergent.
- (3) If 0 < r and for every n holds $s_1(n) = \frac{1}{n+r}$, then $\lim s_1 = 0$.
- (4) If for every n holds $s_1(n) = \frac{1}{n+1}$, then s_1 is convergent and $\lim s_1 = 0$.

Let us observe that there exists a complex sequence which is convergent to 0.

Let us note that there exists a complex sequence which is constant.

Next we state four propositions:

- (5) s_1 is constant iff for all n, m holds $s_1(n) = s_1(m)$.
- (6) For every n holds $(s_1 \cdot N_1)(n) = s_1(N_1(n))$.
- (7) If s_1 is constant and s_2 is a subsequence of s_1 , then s_2 is constant.
- (8) If s_1 is constant and s_2 is a subsequence of s_1 , then $s_1 = s_2$.

Let s_3 be a constant complex sequence. Note that every subsequence of s_3 is constant.

In the sequel h is a convergent to 0 complex sequence and c is a constant complex sequence.

Let I be a partial function from \mathbb{C} to \mathbb{C} . We say that I is rest-like if and only if:

(Def. 2) I is total and for every h holds $h^{-1}(I \cdot h)$ is convergent and $\lim_{h \to 0} (h^{-1}(I \cdot h)) = 0$.

Let us mention that there exists a partial function from \mathbb{C} to \mathbb{C} which is rest-like.

A \mathbb{C} -rest is a rest-like partial function from \mathbb{C} to \mathbb{C} .

Let I be a partial function from \mathbb{C} to \mathbb{C} . We say that I is linear if and only if:

(Def. 3) I is total and there exists a such that for every z holds $I_z = a \cdot z$.

One can check that there exists a partial function from $\mathbb C$ to $\mathbb C$ which is linear.

A \mathbb{C} -linear function is a linear partial function from \mathbb{C} to \mathbb{C} .

We adopt the following convention: R, R_1 , R_2 are \mathbb{C} -rests and L, L_1 , L_2 are \mathbb{C} -linear functions.

Let us consider L_1 , L_2 . Observe that $L_1 + L_2$ is linear and $L_1 - L_2$ is linear. The following propositions are true:

- (9) For all L_1 , L_2 holds $L_1 + L_2$ is a \mathbb{C} -linear function and $L_1 L_2$ is a \mathbb{C} -linear function.
- (10) For all a, L holds a L is a \mathbb{C} -linear function.
- (11) For all R_1 , R_2 holds $R_1 + R_2$ is a \mathbb{C} -rest and $R_1 R_2$ is a \mathbb{C} -rest and $R_1 R_2$ is a \mathbb{C} -rest.
- (12) aR is a \mathbb{C} -rest.
- (13) $L_1 L_2$ is rest-like.
- (14) RL is a \mathbb{C} -rest and LR is a \mathbb{C} -rest.

Let z_0 be a complex number. A subset of $\mathbb C$ is called a neighbourhood of z_0 if:

(Def. 4) There exists a real number g such that 0 < g and $\{y; y \text{ ranges over complex numbers: } |y - z_0| < g\} \subseteq \text{it.}$

Next we state three propositions:

- (15) For every real number g such that 0 < g holds $\{y; y \text{ ranges over complex numbers: } |y z_0| < g\}$ is a neighbourhood of z_0 .
- (16) For every neighbourhood N of z_0 holds $z_0 \in N$.
- (17) Let z_0 be a complex number and N_2 , N_3 be neighbourhoods of z_0 . Then there exists a neighbourhood N of z_0 such that $N \subseteq N_2$ and $N \subseteq N_3$.

Let us consider f and let x_0 be a complex number. We say that f is differentiable in x_0 if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every complex number x such that $x \in N$ holds $f_x - f_{x_0} = L_{x-x_0} + R_{x-x_0}$.

Let us consider f and let z_0 be a complex number. Let us assume that f is differentiable in z_0 . The functor $f'(z_0)$ yielding a complex number is defined by the condition (Def. 6).

(Def. 6) There exists a neighbourhood N of z_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that $f'(z_0) = L_{1_{\mathbb{C}}}$ and for every complex number z such that $z \in N$ holds $f_z - f_{z_0} = L_{z-z_0} + R_{z-z_0}$.

Let us consider f, X. We say that f is differentiable on X if and only if:

(Def. 7) $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x.

We now state the proposition

(18) If f is differentiable on X, then X is a subset of \mathbb{C} .

Let X be a subset of \mathbb{C} . We say that X is closed if and only if:

(Def. 8) For every complex sequence s_3 such that rng $s_3 \subseteq X$ and s_3 is convergent holds $\lim s_3 \in X$.

Let X be a subset of \mathbb{C} . We say that X is open if and only if:

(Def. 9) X^{c} is closed.

Next we state several propositions:

- (19) Let X be a subset of \mathbb{C} . Suppose X is open. Let z_0 be a complex number. If $z_0 \in X$, then there exists a neighbourhood N of z_0 such that $N \subseteq X$.
- (20) Let X be a subset of \mathbb{C} . Suppose X is open. Let z_0 be a complex number. Suppose $z_0 \in X$. Then there exists a real number g such that $\{y; y \text{ ranges over complex numbers: } |y z_0| < g\} \subseteq X$.
- (21) Let X be a subset of \mathbb{C} . Suppose that for every complex number z_0 such that $z_0 \in X$ there exists a neighbourhood N of z_0 such that $N \subseteq X$. Then X is open.

- (22) Let X be a subset of \mathbb{C} . Then X is open if and only if for every complex number x such that $x \in X$ there exists a neighbourhood N of x such that $N \subseteq X$.
- (23) Let X be a subset of \mathbb{C} , z_0 be an element of \mathbb{C} , and r be an element of \mathbb{R} . If $X = \{y; y \text{ ranges over complex numbers: } |y z_0| < r\}$, then X is open.
- (24) Let X be a subset of \mathbb{C} , z_0 be an element of \mathbb{C} , and r be an element of \mathbb{R} . If $X = \{y; y \text{ ranges over complex numbers: } |y z_0| \leq r\}$, then X is closed.

Let us note that there exists a subset of \mathbb{C} which is open.

In the sequel Z denotes an open subset of \mathbb{C} .

Next we state two propositions:

- (25) f is differentiable on Z iff $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds f is differentiable in x.
- (26) If f is differentiable on Y, then Y is open.

Let us consider f, X. Let us assume that f is differentiable on X. The functor $f'_{\uparrow X}$ yielding a partial function from \mathbb{C} to \mathbb{C} is defined by:

- (Def. 10) $\operatorname{dom}(f'_{\uparrow X}) = X$ and for every x such that $x \in X$ holds $(f'_{\uparrow X})_x = f'(x)$. The following propositions are true:
 - (27) Let given f, Z. Suppose $Z \subseteq \text{dom } f$ and there exists a_1 such that rng $f = \{a_1\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{|Z})_x = 0_{\mathbb{C}}$.
 - (28) If s_1 is non-zero, then $s_1 \uparrow k$ is non-zero.

Let us consider h, n. Note that $h \uparrow n$ is convergent to 0.

Let us consider c, n. Note that $c \uparrow n$ is constant.

Next we state a number of propositions:

- (29) $(s_1 + s_2) \uparrow k = s_1 \uparrow k + s_2 \uparrow k$.
- (30) $(s_1 s_2) \uparrow k = s_1 \uparrow k s_2 \uparrow k$.
- (31) $s_1^{-1} \uparrow k = (s_1 \uparrow k)^{-1}$.
- $(32) \quad (s_1 \, s_2) \uparrow k = (s_1 \uparrow k) \, (s_2 \uparrow k).$
- (33) Let x_0 be a complex number and N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let given h, c. Suppose $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq N$. Then $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $f'(x_0) = \lim(h^{-1}(f \cdot (h+c) f \cdot c))$.
- (34) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$.
- (35) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_1'(x_0) f_2'(x_0)$.

- (36) For all a, f, x_0 such that f is differentiable in x_0 holds a f is differentiable in x_0 and $(a f)'(x_0) = a \cdot f'(x_0)$.
- (37) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = (f_2)_{x_0} \cdot f_1'(x_0) + (f_1)_{x_0} \cdot f_2'(x_0)$.
- (38) For all f, Z such that $Z \subseteq \text{dom } f$ and $f \upharpoonright Z = \text{id}_Z$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\upharpoonright Z})_x = 1_{\mathbb{C}}$.
- (39) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 + f_2)'_{|Z})_x = f_1'(x) + f_2'(x)$.
- (40) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 f_2)'_{|Z})_x = f_1'(x) f_2'(x)$.
- (41) Let given a, f, Z. Suppose $Z \subseteq \text{dom}(a f)$ and f is differentiable on Z. Then a f is differentiable on Z and for every x such that $x \in Z$ holds $((a f)'_{1Z})_x = a \cdot f'(x)$.
- (42) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 f_2)'_{|Z})_x = (f_2)_x \cdot f_1'(x) + (f_1)_x \cdot f_2'(x)$.
- (43) If $Z \subseteq \text{dom } f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\upharpoonright Z})_x = 0_{\mathbb{C}}$.
- (44) Suppose $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds $f_x = a \cdot x + b$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{|Z})_x = a$.
- (45) For every complex number x_0 such that f is differentiable in x_0 holds f is continuous in x_0 .
- (46) If f is differentiable on X, then f is continuous on X.
- (47) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z.
- (48) If s_1 is convergent, then $|s_1|$ is convergent.
- (49) If f is differentiable in x_0 , then there exists R such that $R_{0\mathbb{C}} = 0\mathbb{C}$ and R is continuous in $0\mathbb{C}$.

References

- [1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.

- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- 1990. [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [11] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
- [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [13] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. *Formalized Mathematics*, 9(1):185–190, 2001.
- [14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997.
- [15] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403–410, 1997.
- [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received November 4, 2008