Complex Function Differentiability Chanapat Pacharapokin Shinshu University Nagano, Japan Hiroshi Yamazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan Yatsuka Nakamura Shinshu University Nagano, Japan **Summary.** For a complex valued function defined on its domain in complex numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential complex functions are shown. MML identifier: CFDIFF_1, version: 7.11.01 4.117.1046 The articles [17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10], [1], [14], [15], and [13] provide the notation and terminology for this paper. For simplicity, we use the following convention: k, n, m denote elements of \mathbb{N} , X denotes a set, s_1 , s_2 denote complex sequences, Y denotes a subset of \mathbb{C} , f, f_1 , f_2 denote partial functions from \mathbb{C} to \mathbb{C} , r denotes a real number, a, a_1 , b, x, x_0 , z, z_0 denote complex numbers, and N_1 denotes an increasing sequence of naturals. Let I be a complex sequence. We say that I is convergent to 0 if and only if: (Def. 1) I is non-zero and convergent and $\lim I = 0$. We now state four propositions: - (1) Let r_1 be a sequence of real numbers and c_1 be a complex sequence. If $r_1 = c_1$ and r_1 is convergent, then c_1 is convergent. - (2) If 0 < r and for every n holds $s_1(n) = \frac{1}{n+r}$, then s_1 is convergent. - (3) If 0 < r and for every n holds $s_1(n) = \frac{1}{n+r}$, then $\lim s_1 = 0$. - (4) If for every n holds $s_1(n) = \frac{1}{n+1}$, then s_1 is convergent and $\lim s_1 = 0$. Let us observe that there exists a complex sequence which is convergent to 0. Let us note that there exists a complex sequence which is constant. Next we state four propositions: - (5) s_1 is constant iff for all n, m holds $s_1(n) = s_1(m)$. - (6) For every n holds $(s_1 \cdot N_1)(n) = s_1(N_1(n))$. - (7) If s_1 is constant and s_2 is a subsequence of s_1 , then s_2 is constant. - (8) If s_1 is constant and s_2 is a subsequence of s_1 , then $s_1 = s_2$. Let s_3 be a constant complex sequence. Note that every subsequence of s_3 is constant. In the sequel h is a convergent to 0 complex sequence and c is a constant complex sequence. Let I be a partial function from \mathbb{C} to \mathbb{C} . We say that I is rest-like if and only if: (Def. 2) I is total and for every h holds $h^{-1}(I \cdot h)$ is convergent and $\lim_{h \to 0} (h^{-1}(I \cdot h)) = 0$. Let us mention that there exists a partial function from \mathbb{C} to \mathbb{C} which is rest-like. A \mathbb{C} -rest is a rest-like partial function from \mathbb{C} to \mathbb{C} . Let I be a partial function from \mathbb{C} to \mathbb{C} . We say that I is linear if and only if: (Def. 3) I is total and there exists a such that for every z holds $I_z = a \cdot z$. One can check that there exists a partial function from $\mathbb C$ to $\mathbb C$ which is linear. A \mathbb{C} -linear function is a linear partial function from \mathbb{C} to \mathbb{C} . We adopt the following convention: R, R_1 , R_2 are \mathbb{C} -rests and L, L_1 , L_2 are \mathbb{C} -linear functions. Let us consider L_1 , L_2 . Observe that $L_1 + L_2$ is linear and $L_1 - L_2$ is linear. The following propositions are true: - (9) For all L_1 , L_2 holds $L_1 + L_2$ is a \mathbb{C} -linear function and $L_1 L_2$ is a \mathbb{C} -linear function. - (10) For all a, L holds a L is a \mathbb{C} -linear function. - (11) For all R_1 , R_2 holds $R_1 + R_2$ is a \mathbb{C} -rest and $R_1 R_2$ is a \mathbb{C} -rest and $R_1 R_2$ is a \mathbb{C} -rest. - (12) aR is a \mathbb{C} -rest. - (13) $L_1 L_2$ is rest-like. - (14) RL is a \mathbb{C} -rest and LR is a \mathbb{C} -rest. Let z_0 be a complex number. A subset of $\mathbb C$ is called a neighbourhood of z_0 if: (Def. 4) There exists a real number g such that 0 < g and $\{y; y \text{ ranges over complex numbers: } |y - z_0| < g\} \subseteq \text{it.}$ Next we state three propositions: - (15) For every real number g such that 0 < g holds $\{y; y \text{ ranges over complex numbers: } |y z_0| < g\}$ is a neighbourhood of z_0 . - (16) For every neighbourhood N of z_0 holds $z_0 \in N$. - (17) Let z_0 be a complex number and N_2 , N_3 be neighbourhoods of z_0 . Then there exists a neighbourhood N of z_0 such that $N \subseteq N_2$ and $N \subseteq N_3$. Let us consider f and let x_0 be a complex number. We say that f is differentiable in x_0 if and only if the condition (Def. 5) is satisfied. (Def. 5) There exists a neighbourhood N of x_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that for every complex number x such that $x \in N$ holds $f_x - f_{x_0} = L_{x-x_0} + R_{x-x_0}$. Let us consider f and let z_0 be a complex number. Let us assume that f is differentiable in z_0 . The functor $f'(z_0)$ yielding a complex number is defined by the condition (Def. 6). (Def. 6) There exists a neighbourhood N of z_0 such that $N \subseteq \text{dom } f$ and there exist L, R such that $f'(z_0) = L_{1_{\mathbb{C}}}$ and for every complex number z such that $z \in N$ holds $f_z - f_{z_0} = L_{z-z_0} + R_{z-z_0}$. Let us consider f, X. We say that f is differentiable on X if and only if: (Def. 7) $X \subseteq \text{dom } f$ and for every x such that $x \in X$ holds $f \upharpoonright X$ is differentiable in x. We now state the proposition (18) If f is differentiable on X, then X is a subset of \mathbb{C} . Let X be a subset of \mathbb{C} . We say that X is closed if and only if: (Def. 8) For every complex sequence s_3 such that rng $s_3 \subseteq X$ and s_3 is convergent holds $\lim s_3 \in X$. Let X be a subset of \mathbb{C} . We say that X is open if and only if: (Def. 9) X^{c} is closed. Next we state several propositions: - (19) Let X be a subset of \mathbb{C} . Suppose X is open. Let z_0 be a complex number. If $z_0 \in X$, then there exists a neighbourhood N of z_0 such that $N \subseteq X$. - (20) Let X be a subset of \mathbb{C} . Suppose X is open. Let z_0 be a complex number. Suppose $z_0 \in X$. Then there exists a real number g such that $\{y; y \text{ ranges over complex numbers: } |y z_0| < g\} \subseteq X$. - (21) Let X be a subset of \mathbb{C} . Suppose that for every complex number z_0 such that $z_0 \in X$ there exists a neighbourhood N of z_0 such that $N \subseteq X$. Then X is open. - (22) Let X be a subset of \mathbb{C} . Then X is open if and only if for every complex number x such that $x \in X$ there exists a neighbourhood N of x such that $N \subseteq X$. - (23) Let X be a subset of \mathbb{C} , z_0 be an element of \mathbb{C} , and r be an element of \mathbb{R} . If $X = \{y; y \text{ ranges over complex numbers: } |y z_0| < r\}$, then X is open. - (24) Let X be a subset of \mathbb{C} , z_0 be an element of \mathbb{C} , and r be an element of \mathbb{R} . If $X = \{y; y \text{ ranges over complex numbers: } |y z_0| \leq r\}$, then X is closed. Let us note that there exists a subset of \mathbb{C} which is open. In the sequel Z denotes an open subset of \mathbb{C} . Next we state two propositions: - (25) f is differentiable on Z iff $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds f is differentiable in x. - (26) If f is differentiable on Y, then Y is open. Let us consider f, X. Let us assume that f is differentiable on X. The functor $f'_{\uparrow X}$ yielding a partial function from \mathbb{C} to \mathbb{C} is defined by: - (Def. 10) $\operatorname{dom}(f'_{\uparrow X}) = X$ and for every x such that $x \in X$ holds $(f'_{\uparrow X})_x = f'(x)$. The following propositions are true: - (27) Let given f, Z. Suppose $Z \subseteq \text{dom } f$ and there exists a_1 such that rng $f = \{a_1\}$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{|Z})_x = 0_{\mathbb{C}}$. - (28) If s_1 is non-zero, then $s_1 \uparrow k$ is non-zero. Let us consider h, n. Note that $h \uparrow n$ is convergent to 0. Let us consider c, n. Note that $c \uparrow n$ is constant. Next we state a number of propositions: - (29) $(s_1 + s_2) \uparrow k = s_1 \uparrow k + s_2 \uparrow k$. - (30) $(s_1 s_2) \uparrow k = s_1 \uparrow k s_2 \uparrow k$. - (31) $s_1^{-1} \uparrow k = (s_1 \uparrow k)^{-1}$. - $(32) \quad (s_1 \, s_2) \uparrow k = (s_1 \uparrow k) \, (s_2 \uparrow k).$ - (33) Let x_0 be a complex number and N be a neighbourhood of x_0 . Suppose f is differentiable in x_0 and $N \subseteq \text{dom } f$. Let given h, c. Suppose $\text{rng } c = \{x_0\}$ and $\text{rng}(h+c) \subseteq N$. Then $h^{-1}(f \cdot (h+c) f \cdot c)$ is convergent and $f'(x_0) = \lim(h^{-1}(f \cdot (h+c) f \cdot c))$. - (34) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 + f_2$ is differentiable in x_0 and $(f_1 + f_2)'(x_0) = f_1'(x_0) + f_2'(x_0)$. - (35) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = f_1'(x_0) f_2'(x_0)$. - (36) For all a, f, x_0 such that f is differentiable in x_0 holds a f is differentiable in x_0 and $(a f)'(x_0) = a \cdot f'(x_0)$. - (37) Let given f_1 , f_2 , x_0 . Suppose f_1 is differentiable in x_0 and f_2 is differentiable in x_0 . Then $f_1 f_2$ is differentiable in x_0 and $(f_1 f_2)'(x_0) = (f_2)_{x_0} \cdot f_1'(x_0) + (f_1)_{x_0} \cdot f_2'(x_0)$. - (38) For all f, Z such that $Z \subseteq \text{dom } f$ and $f \upharpoonright Z = \text{id}_Z$ holds f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\upharpoonright Z})_x = 1_{\mathbb{C}}$. - (39) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 + f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 + f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 + f_2)'_{|Z})_x = f_1'(x) + f_2'(x)$. - (40) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 f_2)'_{|Z})_x = f_1'(x) f_2'(x)$. - (41) Let given a, f, Z. Suppose $Z \subseteq \text{dom}(a f)$ and f is differentiable on Z. Then a f is differentiable on Z and for every x such that $x \in Z$ holds $((a f)'_{1Z})_x = a \cdot f'(x)$. - (42) Let given f_1 , f_2 , Z. Suppose $Z \subseteq \text{dom}(f_1 f_2)$ and f_1 is differentiable on Z and f_2 is differentiable on Z. Then $f_1 f_2$ is differentiable on Z and for every x such that $x \in Z$ holds $((f_1 f_2)'_{|Z})_x = (f_2)_x \cdot f_1'(x) + (f_1)_x \cdot f_2'(x)$. - (43) If $Z \subseteq \text{dom } f$ and f is a constant on Z, then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{\upharpoonright Z})_x = 0_{\mathbb{C}}$. - (44) Suppose $Z \subseteq \text{dom } f$ and for every x such that $x \in Z$ holds $f_x = a \cdot x + b$. Then f is differentiable on Z and for every x such that $x \in Z$ holds $(f'_{|Z})_x = a$. - (45) For every complex number x_0 such that f is differentiable in x_0 holds f is continuous in x_0 . - (46) If f is differentiable on X, then f is continuous on X. - (47) If f is differentiable on X and $Z \subseteq X$, then f is differentiable on Z. - (48) If s_1 is convergent, then $|s_1|$ is convergent. - (49) If f is differentiable in x_0 , then there exists R such that $R_{0\mathbb{C}} = 0\mathbb{C}$ and R is continuous in $0\mathbb{C}$. ## References - [1] Agnieszka Banachowicz and Anna Winnicka. Complex sequences. Formalized Mathematics, 4(1):121–124, 1993. - [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990. - [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990. - [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. - [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990. - [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990. - 1990. [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990. - [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990. - [9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990. - [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990. - [11] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. - [12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990. - [13] Takashi Mitsuishi, Katsumi Wasaki, and Yasunari Shidama. Property of complex sequence and continuity of complex function. *Formalized Mathematics*, 9(1):185–190, 2001. - [14] Adam Naumowicz. Conjugate sequences, bounded complex sequences and convergent complex sequences. Formalized Mathematics, 6(2):265–268, 1997. - [15] Yasunari Shidama and Artur Korniłowicz. Convergence and the limit of complex sequences. Series. Formalized Mathematics, 6(3):403–410, 1997. - [16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990. - [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990. - [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990. - [19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990. Received November 4, 2008