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Summary. In this article, we give several integrability formulas of some
functions including the trigonometric function and the index function [3]. We
also give the definitions of the orthogonal polynomial and norm function, and
some of their important properties [19].
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The terminology and notation used here are introduced in the following articles:
[10], [21], [17], [6], [20], [1], [9], [13], [2], [4], [18], [15], [5], [8], [11], [14], [12], [16],
and [7].
For simplicity, we use the following convention: r, p, x denote real numbers,

n denotes an element of N, A denotes a closed-interval subset of R, f , g denote
partial functions from R to R, and Z denotes an open subset of R.
We now state a number of propositions:

(1) −(the function exp) · ((−1)�+0) is differentiable on R and for every x
holds (−(the function exp) · ((−1)�+0))′�R(x) = exp(−x).
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(2)
∫
A

((the function exp) · ((−1)�+0))(x)dx = −exp(−supA)+exp(−inf A).

(3) 1
2 ((the function exp) ·(2�+0)) is differentiable on R and for every x
holds (12 ((the function exp) ·(2�+0)))

′
�R(x) = exp(2 · x).

(4)
∫
A

((the function exp) · (2�+0))(x)dx = 1
2
·exp(2·supA)−1

2
·exp(2·inf A).

(5) Suppose r 6= 0. Then 1r ((the function exp) ·(r�+0)) is differentiable on
R and for every x holds (1r ((the function exp) ·(r�+0)))

′
�R(x) = exp(r ·x).

(6) If r 6= 0, then
∫
A

((the function exp) · (r�+0))(x)dx = 1
r
·exp(r ·supA)−

1
r
· exp(r · inf A).

(7)
∫
A

((the function sin) · (2�+0))(x)dx = (−1
2
)·cos(2·supA)−(−1

2
)·cos(2·

inf A).

(8) Suppose n 6= 0. Then (− 1n) ((the function cos) ·(n�+0)) is differentiable
on R and for every x holds ((− 1n) ((the function cos) ·(n�+0)))

′
�R(x) =

sin(n · x).

(9) If n 6= 0, then
∫
A

((the function sin) · (n�+0))(x)dx = (− 1
n
) · cos(n ·

supA)− (− 1
n
) · cos(n · inf A).

(10) 1
2 ((the function sin) ·(2�+0)) is differentiable on R and for every x holds
(12 ((the function sin) ·(2�+0)))

′
�R(x) = cos(2 · x).

(11)
∫
A

((the function cos) · (2�+0))(x)dx = 1
2
·sin(2·supA)− 1

2
·sin(2·inf A).

(12) Suppose n 6= 0. Then 1n ((the function sin) ·(n�+0)) is differentiable on
R and for every x holds ( 1n ((the function sin) ·(n�+0)))

′
�R(x) = cos(n ·x).

(13) If n 6= 0, then
∫
A

((the function cos) · (n�+0))(x)dx = 1
n
·sin(n ·supA)−

1
n
· sin(n · inf A).

(14) If A ⊆ Z, then
∫
A

(idZ (the function sin))(x)dx = ((−supA) · cos supA+

sin supA)− ((−inf A) · cos inf A+ sin inf A).

(15) If A ⊆ Z, then
∫
A

(idZ (the function cos))(x)dx = (supA · sin supA +

cos supA)− (inf A · sin inf A+ cos inf A).
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(16) idZ (the function cos) is differentiable on Z and for every x such that
x ∈ Z holds (idZ (the function cos))′�Z(x) = cosx− x · sinx.

(17)(i) −the function sin + idZ (the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function sin+idZ (the function
cos))′�Z(x) = −x · sinx.

(18) If A ⊆ Z, then
∫
A

((−idZ) (the function sin))(x)dx = (−sin supA+supA·

cos supA)− (−sin inf A+ inf A · cos inf A).
(19)(i) −the function cos− idZ (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cos−idZ (the function
sin))′�Z(x) = −x · cosx.

(20) If A ⊆ Z, then
∫
A

((−idZ) (the function cos))(x)dx = −cos supA−supA·

sin supA− (−cos inf A− inf A · sin inf A).

(21) If A ⊆ Z, then
∫
A

((the function sin) + idZ (the function cos))(x)dx =

supA · sin supA− inf A · sin inf A.

(22) If A ⊆ Z, then
∫
A

(−the function cos + idZ (the function sin))(x)dx =

(−supA) · cos supA− (−inf A) · cos inf A.

(23)
∫
A

((1�+0) (the function exp))(x)dx = exp(supA− 1)− exp(inf A− 1).

(24) 1
n+1 (�

n+1) is differentiable on R and for every x holds ( 1n+1 (�
n+1))′�R(x) =

xn.

(25)
∫
A

(�n)(x)dx =
1
n+ 1

· (supA)n+1 − 1
n+ 1

· (inf A)n+1.

(26) For all partial functions f , g from R to R and for every non empty subset
C of R holds (f − g) � C = f � C − g � C.

(27) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 + f2) � C) (g � C) = (f1 g + f2 g) � C.

(28) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 − f2) � C) (g � C) = (f1 g − f2 g) � C.

(29) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 f2) � C) (g � C) = (f1 � C) ((f2 g) � C).

Let A be a closed-interval subset of R and let f , g be partial functions from
R to R. The functor 〈f, g〉A yielding a real number is defined by:

(Def. 1) 〈f, g〉A =
∫
A

(f g)(x)dx.
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The following propositions are true:

(30) For all partial functions f , g from R to R and for every closed-interval
subset A of R holds 〈f, g〉A = 〈g, f〉A.

(31) Let f1, f2, g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that
(i) (f1 g) � A is total,
(ii) (f2 g) � A is total,
(iii) (f1 g) � A is bounded,
(iv) f1 g is integrable on A,
(v) (f2 g) � A is bounded, and
(vi) f2 g is integrable on A.
Then 〈f1 + f2, g〉A = 〈(f1), g〉A + 〈(f2), g〉A.

(32) Let f1, f2, g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that
(i) (f1 g) � A is total,
(ii) (f2 g) � A is total,
(iii) (f1 g) � A is bounded,
(iv) f1 g is integrable on A,
(v) (f2 g) � A is bounded, and
(vi) f2 g is integrable on A.
Then 〈f1 − f2, g〉A = 〈(f1), g〉A − 〈(f2), g〉A.

(33) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈−f, g〉A = −〈f, g〉A.

(34) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈r f, g〉A = r · 〈f, g〉A.

(35) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈r f, p g〉A = r · p · 〈f, g〉A.

(36) For all partial functions f , g, h from R to R and for every closed-interval
subset A of R holds 〈f g, h〉A = 〈f, g h〉A.

(37) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and (g g) �
A is total and (f f) � A is bounded and (f g) � A is bounded and (g g) � A
is bounded and f f is integrable on A and f g is integrable on A and g g
is integrable on A. Then 〈f + g, f + g〉A = 〈f, f〉A + 2 · 〈f, g〉A + 〈g, g〉A.
Let A be a closed-interval subset of R and let f , g be partial functions from

R to R. We say that f is orthogonal with g in A if and only if:
(Def. 2) 〈f, g〉A = 0.
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The following propositions are true:

(38) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and
(g g) � A is total and (f f) � A is bounded and (f g) � A is bounded
and (g g) � A is bounded and f f is integrable on A and f g is integrable
on A and g g is integrable on A and f is orthogonal with g in A. Then
〈f + g, f + g〉A = 〈f, f〉A + 〈g, g〉A.

(39) Let f be a partial function from R to R and A be a closed-interval
subset of R. Suppose (f f) � A is total and (f f) � A is bounded and f f is
integrable on A and for every x such that x ∈ A holds ((f f) � A)(x) ≥ 0.
Then 〈f, f〉A ≥ 0.

(40) The function sin is orthogonal with the function cos in [0, π].

(41) The function sin is orthogonal with the function cos in [0, π · 2].
(42) The function sin is orthogonal with the function cos in [2·n·π, (2·n+1)·π].
(43) The function sin is orthogonal with the function cos in [x+ 2 · n · π, x+
(2 · n+ 1) · π].

(44) The function sin is orthogonal with the function cos in [−π, π].
(45) The function sin is orthogonal with the function cos in [−π2 ,

π
2 ].

(46) The function sin is orthogonal with the function cos in [−2 · π, 2 · π].
(47) The function sin is orthogonal with the function cos in [−2 · n · π, 2·n·π].
(48) The function sin is orthogonal with the function cos in [x− 2 · n · π, x+
2 · n · π].
Let A be a closed-interval subset of R and let f be a partial function from

R to R. The functor ||f ||A yields a real number and is defined by:
(Def. 3) ||f ||A =

√
〈f, f〉A.

Next we state three propositions:

(49) Let f be a partial function from R to R and A be a closed-interval
subset of R. Suppose (f f) � A is total and (f f) � A is bounded and f f is
integrable on A and for every x such that x ∈ A holds ((f f) � A)(x) ≥ 0.
Then 0 ≤ ||f ||A.

(50) For every partial function f from R to R and for every closed-interval
subset A of R holds ||1 f ||A = ||f ||A.

(51) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and
(g g) � A is total and (f f) � A is bounded and (f g) � A is bounded and
(g g) � A is bounded and f f is integrable on A and f g is integrable on A
and g g is integrable on A and f is orthogonal with g in A and for every x
such that x ∈ A holds ((f f) � A)(x) ≥ 0 and for every x such that x ∈ A
holds ((g g) � A)(x) ≥ 0. Then (||f + g||A)2 = (||f ||A)2 + (||g||A)2.
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For simplicity, we follow the rules: a, b, x are real numbers, n is an element
of N, A is a closed-interval subset of R, f , f1, f2 are partial functions from R to
R, and Z is an open subset of R.
Next we state several propositions:

(52) If −a /∈ A, then 1
1�+a�A is continuous.

(53) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) 6= 0,
(iii) Z = dom f,
(iv) dom f = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = − 1

(a+x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = f(supA)−1 − f(inf A)−1.

(54) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) 6= 0,
(iii) dom((−1) 1f ) = Z,
(iv) dom((−1) 1f ) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

(a+x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −f(supA)−1 + f(inf A)−1.

(55) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) 6= 0,
(iii) dom f = Z,
(iv) dom f = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

(a−x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = f(supA)−1 − f(inf A)−1.

(56) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

a+x , and
(vi) f2�A is continuous.
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Then
∫
A

f2(x)dx = ln(a+ supA)− ln(a+ inf A).

Next we state a number of propositions:

(57) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x− a and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

x−a , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln f(supA)− ln f(inf A).

(58) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom(−(the function ln) · f) = Z,
(iv) dom(−(the function ln) · f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

a−x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −ln(a− supA) + ln(a− inf A).

(59) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = a+ x and f1(x) > 0 and dom(idZ − a f) = Z =
dom f2 and for every x such that x ∈ Z holds f2(x) = x

a+x and f2�A is

continuous. Then
∫
A

f2(x)dx = supA−a · f(supA)− (inf A−a · f(inf A)).

(60) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = a+ x and f1(x) > 0 and dom((2 · a) f − idZ) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = a−xa+x and f2�A is

continuous. Then
∫
A

f2(x)dx = 2·a·f(supA)−supA−(2·a·f(inf A)−inf A).

(61) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ a and f1(x) > 0 and dom(idZ − (2 · a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax+a and f2�A is

continuous. Then
∫
A

f2(x)dx = supA−2·a·f(supA)−(inf A−2·a·f(inf A)).

(62) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− a and f1(x) > 0 and dom(idZ + (2 · a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax−a and f2�A
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is continuous. Then
∫
A

f2(x)dx = (supA+2 · a · f(supA))− (inf A+2 · a ·

f(inf A)).

(63) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ b and f1(x) > 0 and dom(idZ + (a− b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax+b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (a − b) · f(supA)) − (inf A +

(a− b) · f(inf A)).
(64) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− b and f1(x) > 0 and dom(idZ + (a+ b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax−b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (a + b) · f(supA)) − (inf A +

(a+ b) · f(inf A)).
(65) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ b and f1(x) > 0 and dom(idZ − (a+ b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax+b and f2�A

is continuous. Then
∫
A

f2(x)dx = supA− (a+ b) · f(supA)− (inf A− (a+

b) · f(inf A)).
(66) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− b and f1(x) > 0 and dom(idZ + (b− a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax−b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (b − a) · f(supA)) − (inf A +

(b− a) · f(inf A)).
(67) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln supA− ln inf A.

(68) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds x > 0,
(iii) dom((the function ln) ·(�n)) = Z,
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(iv) dom((the function ln) ·(�n)) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = nx , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln((supA)n)− ln((inf A)n).

(69) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x,
(iii) dom((the function ln) · 1f ) = Z,
(iv) dom((the function ln) · 1f ) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = − 1x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −ln supA+ ln inf A.

(70) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom(23 f

3
2 ) = Z,

(iv) dom(23 f
3
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a+ x)
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx =
2
3
· (a+ supA)

3
2 − 2
3
· (a+ inf A)

3
2 .

(71) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom((−23) f

3
2 ) = Z,

(iv) dom((−23) f
3
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a− x)
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −
2
3
· (a− supA)

3
2 +
2
3
· (a− inf A)

3
2 .

(72) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom(2 f

1
2 ) = Z,

(iv) dom(2 f
1
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a+ x)−
1
2 , and

(vi) f2�A is continuous.
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Then
∫
A

f2(x)dx = 2 · (a+ supA)
1
2 − 2 · (a+ inf A)

1
2 .

(73) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom((−2) f

1
2 ) = Z,

(iv) dom((−2) f
1
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a− x)−
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −2 · (a− supA)
1
2 + 2 · (a− inf A)

1
2 .

(74) Suppose that
(i) A ⊆ Z,
(ii) dom((−idZ) (the function cos)+the function sin) = Z,
(iii) for every x such that x ∈ Z holds f(x) = x · sinx,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−supA · cos supA + sin supA) − (−inf A · cos inf A +

sin inf A).

(75) Suppose A ⊆ Z and dom (the function sec) = Z and for every x such
that x ∈ Z holds f(x) = sinx

(cosx)2 and Z = dom f and f�A is continuous.

Then
∫
A

f(x)dx = sec supA− sec inf A.

(76) Suppose Z ⊆ dom(−the function cosec). Then −the function cosec
is differentiable on Z and for every x such that x ∈ Z holds
(−the function cosec)′�Z(x) = cosx

(sinx)2 .

(77) Suppose A ⊆ Z and dom(−the function cosec) = Z and for every x such
that x ∈ Z holds f(x) = cosx

(sinx)2 and Z = dom f and f�A is continuous.

Then
∫
A

f(x)dx = −cosec supA+ cosec inf A.
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