Integral of Complex-Valued Measurable Function

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Gifu National College of Technology
Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalized the notion of the integral of a complex-valued function considered as a sum of its real and imaginary parts. Then we defined the measurability and integrability in this context, and proved the linearity and several other basic properties of complex-valued measurable functions. The set of properties showed in this paper is based on [15], where the case of real-valued measurable functions is considered.

MML identifier: MESFUN6C, version: $\underline{7.9 .014 .101 .1015}$

The notation and terminology used here are introduced in the following papers: [17], [1], [11], [18], [6], [19], [7], [2], [12], [14], [16], [5], [4], [3], [9], [10], [13], [8], and [15].

1. Definitions for Complex-valued Functions

One can prove the following proposition
(1) For all real numbers a, b holds $\overline{\mathbb{R}}(a)+\overline{\mathbb{R}}(b)=a+b$ and $-\overline{\mathbb{R}}(a)=-a$ and $\overline{\mathbb{R}}(a)-\overline{\mathbb{R}}(b)=a-b$ and $\overline{\mathbb{R}}(a) \cdot \overline{\mathbb{R}}(b)=a \cdot b$.
Let X be a non empty set and let f be a partial function from X to \mathbb{C}. The functor $\Re(f)$ yields a partial function from X to \mathbb{R} and is defined as follows:
(Def. 1) $\operatorname{dom} \Re(f)=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom} \Re(f)$ holds $\Re(f)(x)=\Re(f(x))$.

The functor $\Im(f)$ yields a partial function from X to \mathbb{R} and is defined as follows:
(Def. 2) $\operatorname{dom} \Im(f)=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom} \Im(f)$ holds $\Im(f)(x)=\Im(f(x))$.

2. The Measurability of Complex-valued Functions

For simplicity, we use the following convention: X is a non empty set, Y is a set, S is a σ-field of subsets of X, M is a σ-measure on S, f, g are partial functions from X to \mathbb{C}, r is a real number, c is a complex number, and E, A, B are elements of S.

Let X be a non empty set, let S be a σ-field of subsets of X, let f be a partial function from X to \mathbb{C}, and let E be an element of S. We say that f is measurable on E if and only if:
(Def. 3) $\Re(f)$ is measurable on E and $\Im(f)$ is measurable on E.
One can prove the following propositions:
(2) $\quad r \Re(f)=\Re(r f)$ and $r \Im(f)=\Im(r f)$.
(3) $\Re(c f)=\Re(c) \Re(f)-\Im(c) \Im(f)$ and $\Im(c f)=\Im(c) \Re(f)+\Re(c) \Im(f)$.
(4) $-\Im(f)=\Re(i f)$ and $\Re(f)=\Im(i f)$.
(5) $\Re(f+g)=\Re(f)+\Re(g)$ and $\Im(f+g)=\Im(f)+\Im(g)$.
(6) $\Re(f-g)=\Re(f)-\Re(g)$ and $\Im(f-g)=\Im(f)-\Im(g)$.
(7) $\Re(f) \upharpoonright A=\Re(f \upharpoonright A)$ and $\Im(f) \upharpoonright A=\Im(f \upharpoonright A)$.
(8) $f=\Re(f)+i \Im(f)$.
(9) If $B \subseteq A$ and f is measurable on A, then f is measurable on B.
(10) If f is measurable on A and f is measurable on B, then f is measurable on $A \cup B$.
(11) If f is measurable on A and g is measurable on A, then $f+g$ is measurable on A.
(12) If f is measurable on A and g is measurable on A and $A \subseteq \operatorname{dom} g$, then $f-g$ is measurable on A.
(13) If $Y \subseteq \operatorname{dom}(f+g)$, then $\operatorname{dom}(f \upharpoonright Y+g \upharpoonright Y)=Y$ and $(f+g) \upharpoonright Y=f \upharpoonright Y+g \upharpoonright Y$.
(14) If f is measurable on B and $A=\operatorname{dom} f \cap B$, then $f \upharpoonright B$ is measurable on A.
(15) If $\operatorname{dom} f, \operatorname{dom} g \in S$, then $\operatorname{dom}(f+g) \in S$.
(16) If $\operatorname{dom} f=A$, then f is measurable on B iff f is measurable on $A \cap B$.
(17) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $c f$ is measurable on A.
(18) Given an element A of S such that $\operatorname{dom} f=A$. Let c be a complex number and B be an element of S. If f is measurable on B, then $c f$ is measurable on B.

3. The Integral of a Complex-valued Measurable Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to \mathbb{C}. We say that f is integrable on M if and only if:
(Def. 4) $\Re(f)$ is integrable on M and $\Im(f)$ is integrable on M.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, and let f be a partial function from X to \mathbb{C}. Let us assume that f is integrable on M. The functor $\int f \mathrm{~d} M$ yielding a complex number is defined by:
(Def. 5) There exist real numbers R, I such that $R=\int \Re(f) \mathrm{d} M$ and $I=$ $\int \Im(f) \mathrm{d} M$ and $\int f \mathrm{~d} M=R+I \cdot i$.
We now state several propositions:
(19) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to $\overline{\mathbb{R}}$, and A be an element of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$. Then $f\lceil A$ is integrable on M.
(20) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, f be a partial function from X to \mathbb{R}, and E, A be elements of S. Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$. Then $f\lceil A$ is integrable on M.
(21) Suppose there exists an element E of S such that $E=\operatorname{dom} f$ and f is measurable on E and $M(A)=0$. Then $f\lceil A$ is integrable on M and $\int f \upharpoonright A \mathrm{~d} M=0$.
(22) If $E=\operatorname{dom} f$ and f is integrable on M and $M(A)=0$, then $\int f \upharpoonright(E \backslash$ A) $\mathrm{d} M=\int f \mathrm{~d} M$.
(23) If f is integrable on M, then $f \upharpoonright A$ is integrable on M.
(24) If f is integrable on M and A misses B, then $\int f \upharpoonright(A \cup B) \mathrm{d} M=$ $\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
(25) If f is integrable on M and $B=\operatorname{dom} f \backslash A$, then $f \upharpoonright A$ is integrable on M and $\int f \mathrm{~d} M=\int f \upharpoonright A \mathrm{~d} M+\int f \upharpoonright B \mathrm{~d} M$.
Let k be a real number, let X be a non empty set, and let f be a partial function from X to \mathbb{R}. The functor f^{k} yields a partial function from X to \mathbb{R} and is defined as follows:
(Def. 6) $\quad \operatorname{dom}\left(f^{k}\right)=\operatorname{dom} f$ and for every element x of X such that $x \in \operatorname{dom}\left(f^{k}\right)$ holds $f^{k}(x)=f(x)^{k}$.
Let us consider X. Observe that there exists a partial function from X to \mathbb{R} which is non-negative.

Let k be a non negative real number, let us consider X, and let f be a non-negative partial function from X to \mathbb{R}. Observe that f^{k} is non-negative.

We now state a number of propositions:
(26) Let k be a real number, given X, S, E, and f be a partial function from X to \mathbb{R}. If f is non-negative and $0 \leq k$, then f^{k} is non-negative.
(27) Let x be a set, given X, S, E, and f be a partial function from X to \mathbb{R}. If f is non-negative, then $f(x)^{\frac{1}{2}}=\sqrt{f(x)}$.
(28) For every partial function f from X to \mathbb{R} and for every real number a such that $A \subseteq \operatorname{dom} f$ holds $A \cap \operatorname{LE-dom}(f, a)=A \backslash A \cap \operatorname{GTE-dom}(f, a)$.
(29) Let k be a real number, given X, S, E, and f be a partial function from X to \mathbb{R}. Suppose f is non-negative and $0 \leq k$ and $E \subseteq \operatorname{dom} f$ and f is measurable on E. Then f^{k} is measurable on E.
(30) If f is measurable on A and $A \subseteq \operatorname{dom} f$, then $|f|$ is measurable on A.
(31) Given an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A. Then f is integrable on M if and only if $|f|$ is integrable on M.
(32) If f is integrable on M and g is integrable on M, then $\operatorname{dom}(f+g) \in S$.
(33) If f is integrable on M and g is integrable on M, then $f+g$ is integrable on M.
(34) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to \mathbb{R}. Suppose f is integrable on M and g is integrable on M. Then $f-g$ is integrable on M.
(35) If f is integrable on M and g is integrable on M, then $f-g$ is integrable on M.
(36) Suppose f is integrable on M and g is integrable on M. Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f+g \mathrm{~d} M=$ $\int f \upharpoonright E \mathrm{~d} M+\int g \upharpoonright E \mathrm{~d} M$.
(37) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ measure on S, and f, g be partial functions from X to \mathbb{R}. Suppose f is integrable on M and g is integrable on M. Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f-g \mathrm{~d} M=\int f \upharpoonright E \mathrm{~d} M+$ $\int(-g) \upharpoonright E \mathrm{~d} M$.
(38) If f is integrable on M, then $r f$ is integrable on M and $\int r f \mathrm{~d} M=$ $r \cdot \int f \mathrm{~d} M$.
(39) If f is integrable on M, then $i f$ is integrable on M and $\int i f \mathrm{~d} M=$ $i \cdot \int f \mathrm{~d} M$.
(40) If f is integrable on M, then $c f$ is integrable on M and $\int c f \mathrm{~d} M=$ $c \cdot \int f \mathrm{~d} M$.
(41) For every partial function f from X to \mathbb{R} and for all Y, r holds $(r f) \upharpoonright Y=$ $r(f \dagger Y)$.
(42) Let f, g be partial functions from X to \mathbb{R}. Suppose that
(i) there exists an element A of S such that $A=\operatorname{dom} f \cap \operatorname{dom} g$ and f is measurable on A and g is measurable on A,
(ii) f is integrable on M,
(iii) g is integrable on M, and
(iv) $g-f$ is non-negative.

Then there exists an element E of S such that $E=\operatorname{dom} f \cap \operatorname{dom} g$ and $\int f \upharpoonright E \mathrm{~d} M \leq \int g \upharpoonright E \mathrm{~d} M$.
(43) Suppose there exists an element A of S such that $A=\operatorname{dom} f$ and f is measurable on A and f is integrable on M. Then $\left|\int f \mathrm{~d} M\right| \leq \int|f| \mathrm{d} M$.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-measure on S, let f be a partial function from X to \mathbb{C}, and let B be an element of S. The functor $\int_{B} f \mathrm{~d} M$ yields a complex number and is defined by:
(Def. 7) $\int_{B} f \mathrm{~d} M=\int f \upharpoonright B \mathrm{~d} M$.
Next we state two propositions:
(44) Suppose f is integrable on M and g is integrable on M and $B \subseteq \operatorname{dom}(f+$ $g)$. Then $f+g$ is integrable on M and $\int_{B} f+g \mathrm{~d} M=\int_{B} f \mathrm{~d} M+\int_{B} g \mathrm{~d} M$.
(45) If f is integrable on M and f is measurable on B, then $\int_{B} c f \mathrm{~d} M=$ $c \cdot \int_{B} f \mathrm{~d} M$.

4. Several Properties of Real-valued Measurable Functions

In the sequel f denotes a partial function from X to \mathbb{R} and a denotes a real number.

One can prove the following four propositions:
(46) If $A \subseteq \operatorname{dom} f$, then $A \cap \operatorname{GTE-dom}(f, a)=A \backslash A \cap \operatorname{LE-dom}(f, a)$.
(47) If $A \subseteq \operatorname{dom} f$, then $A \cap \operatorname{GT}-\operatorname{dom}(f, a)=A \backslash A \cap \operatorname{LEQ-dom}(f, a)$.
(48) If $A \subseteq \operatorname{dom} f$, then $A \cap \mathrm{LEQ-dom}(f, a)=A \backslash A \cap \operatorname{GT-dom}(f, a)$.
(49) $\quad A \cap \operatorname{EQ-dom}(f, a)=A \cap \operatorname{GTE-dom}(f, a) \cap \operatorname{LEQ-dom}(f, a)$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[3] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[4] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.
[5] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[10] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[13] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[14] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[15] Yasunari Shidama and Noboru Endou. Integral of real-valued measurable function. Formalized Mathematics, 14(4):143-152, 2006.
[16] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received July 30, 2008

