Model Checking. Part II

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Abstract

Summary. This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on $[2,3]$.

MML identifier: MODELC_2, version: $\underline{7.9 .014 .101 .1015}$

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and terminology for this paper.

Let x be a set. The functor CastNat x yielding a natural number is defined by:
(Def. 1) CastNat $x=\left\{\begin{array}{l}x, \text { if } x \text { is a natural number, } \\ 0, \text { otherwise. }\end{array}\right.$
Let W_{1} be a set. A sequence of W_{1} is a function from \mathbb{N} into W_{1}.
For simplicity, we adopt the following rules: k, n denote natural numbers, a denotes a set, D, S denote non empty sets, and p, q denote finite sequences of elements of \mathbb{N}.

Let us consider n. The functor atom. n yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 2) atom. $n=\langle 6+n\rangle$.
Let us consider p. The functor $\neg p$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 3) $\neg p=\langle 0\rangle \wedge p$.
Let us consider q. The functor $p \wedge q$ yields a finite sequence of elements of \mathbb{N} and is defined by:
(Def. 4) $p \wedge q=\langle 1\rangle{ }^{\wedge} p^{\wedge} q$.
The functor $p \vee q$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 5) $\quad p \vee q=\langle 2\rangle \frown p^{\frown} q$.
Let us consider p. The functor $\mathcal{X} p$ yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 6) $\mathcal{X} p=\langle 3\rangle^{\wedge} p$.
Let us consider q. The functor $p \mathcal{U} q$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 7) $\quad p \mathcal{U} q=\langle 4\rangle{ }^{\wedge} p^{\wedge} q$.
The functor $p \mathcal{R} q$ yields a finite sequence of elements of \mathbb{N} and is defined as follows:
(Def. 8) $\quad p \mathcal{R} q=\langle 5\rangle^{\wedge} p^{\wedge} q$.
The non empty set $\mathrm{WFF}_{\text {LTL }}$ is defined by the conditions (Def. 9).
(Def. 9) For every a such that $a \in \mathrm{WFF}_{\text {LTL }}$ holds a is a finite sequence of elements of \mathbb{N} and for every n holds atom. $n \in \mathrm{WFF}_{\text {LTL }}$ and for every p such that $p \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $\neg p \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \wedge q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \vee q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for every p such that $p \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $\mathcal{X} p \in$ $\mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \mathcal{U} q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \mathcal{R} q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for every D such that for every a such that $a \in D$ holds a is a finite sequence of elements of \mathbb{N} and for every n holds atom. $n \in D$ and for every p such that $p \in D$ holds $\neg p \in D$ and for all p, q such that $p, q \in D$ holds $p \wedge q \in D$ and for all p, q such that $p, q \in D$ holds $p \vee q \in D$ and for every p such that $p \in D$ holds $\mathcal{X} p \in D$ and for all p, q such that $p, q \in D$ holds $p \mathcal{U} q \in D$ and for all p, q such that $p, q \in D$ holds $p \mathcal{R} q \in D$ holds $\mathrm{WFF}_{\mathrm{LTL}} \subseteq D$.

Let I_{1} be a finite sequence of elements of \mathbb{N}. We say that I_{1} is LTL-formulalike if and only if:
(Def. 10) $\quad I_{1}$ is an element of $\mathrm{WFF}_{\text {LTL }}$.
Let us observe that there exists a finite sequence of elements of \mathbb{N} which is LTL-formula-like.

An LTL-formula is a LTL-formula-like finite sequence of elements of \mathbb{N}.
Next we state the proposition
(1) a is an LTL-formula iff $a \in \mathrm{WFF}_{\mathrm{LTL}}$.

In the sequel $F, F_{1}, G, H, H_{1}, H_{2}$ denote LTL-formulae.
Let us consider n. Observe that atom. n is LTL-formula-like.
Let us consider H. Note that $\neg H$ is LTL-formula-like and $\mathcal{X} H$ is LTL-formula-like. Let us consider G. One can check the following observations:

* $H \wedge G$ is LTL-formula-like,
* $H \vee G$ is LTL-formula-like,
* $\quad H \mathcal{U} G$ is LTL-formula-like, and
* $H \mathcal{R} G$ is LTL-formula-like.

Let us consider H. We say that H is atomic if and only if:
(Def. 11) There exists n such that $H=$ atom. n.
We say that H is negative if and only if:
(Def. 12) There exists H_{1} such that $H=\neg H_{1}$.
We say that H is conjunctive if and only if:
(Def. 13) There exist F, G such that $H=F \wedge G$.
We say that H is disjunctive if and only if:
(Def. 14) There exist F, G such that $H=F \vee G$.
We say that H has next operator if and only if:
(Def. 15) There exists H_{1} such that $H=\mathcal{X} H_{1}$.
We say that H has until operator if and only if:
(Def. 16) There exist F, G such that $H=F \mathcal{U} G$.
We say that H has release operator if and only if:
(Def. 17) There exist F, G such that $H=F \mathcal{R} G$.
Next we state two propositions:
(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has next operator, or until operator, or release operator.
(3) $1 \leq$ len H.

Let us consider H. Let us assume that H is either negative or has next operator. The functor $\operatorname{Arg}(H)$ yields an LTL-formula and is defined by:
(Def. 18)(i) $\neg \operatorname{Arg}(H)=H$ if H is negative,
(ii) $\mathcal{X} \operatorname{Arg}(H)=H$, otherwise.

Let us consider H. Let us assume that H is either conjunctive or disjunctive or has until operator or release operator. The functor $\operatorname{Left} \operatorname{Arg}(H)$ yielding an LTL-formula is defined as follows:
(Def. 19)(i) There exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \wedge H_{1}=H$ if H is conjunctive,
(ii) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \vee H_{1}=H$ if H is disjunctive,
(iii) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \mathcal{U} H_{1}=H$ if H has until operator,
(iv) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \mathcal{R} H_{1}=H$, otherwise.

The functor $\operatorname{Right} \operatorname{Arg}(H)$ yields an LTL-formula and is defined by:
(Def. 20)(i) There exists H_{1} such that $H_{1} \wedge \operatorname{Right} \operatorname{Arg}(H)=H$ if H is conjunctive,
(ii) there exists H_{1} such that $H_{1} \vee \operatorname{Right} \operatorname{Arg}(H)=H$ if H is disjunctive,
(iii) there exists H_{1} such that $H_{1} \mathcal{U} \operatorname{Right} \operatorname{Arg}(H)=H$ if H has until operator,
(iv) there exists H_{1} such that $H_{1} \mathcal{R} \operatorname{Right} \operatorname{Arg}(H)=H$, otherwise.

The following propositions are true:
(4) If H is negative, then $H=\neg \operatorname{Arg}(H)$.
(5) If H has next operator, then $H=\mathcal{X} \operatorname{Arg}(H)$.
(6) If H is conjunctive, then $H=\operatorname{Left} \operatorname{Arg}(H) \wedge \operatorname{Right} \operatorname{Arg}(H)$.
(7) If H is disjunctive, then $H=\operatorname{Left} \operatorname{Arg}(H) \vee \operatorname{Right} \operatorname{Arg}(H)$.
(8) If H has until operator, then $H=\operatorname{Left} \operatorname{Arg}(H) \mathcal{U} \operatorname{Right} \operatorname{Arg}(H)$.
(9) If H has release operator, then $H=\operatorname{Left} \operatorname{Arg}(H) \mathcal{R} \operatorname{Right} \operatorname{Arg}(H)$.
(10) If H is either negative or has next operator, then len $H=1+\operatorname{len} \operatorname{Arg}(H)$ and len $\operatorname{Arg}(H)<\operatorname{len} H$.
(11) Suppose H is either conjunctive or disjunctive or has until operator or release operator. Then len $H=1+$ len $\operatorname{Left} \operatorname{Arg}(H)+$ len $\operatorname{Right} \operatorname{Arg}(H)$ and len $\operatorname{Left} \operatorname{Arg}(H)<$ len H and len $\operatorname{Right} \operatorname{Arg}(H)<\operatorname{len} H$.
Let us consider H, F. We say that H is an immediate constituent of F if and only if:
(Def. 21) $F=\neg H$ or $F=\mathcal{X} H$ or there exists H_{1} such that $F=H \wedge H_{1}$ or $F=H_{1} \wedge H$ or $F=H \vee H_{1}$ or $F=H_{1} \vee H$ or $F=H \mathcal{U} H_{1}$ or $F=H_{1} \mathcal{U} H$ or $F=H \mathcal{R} H_{1}$ or $F=H_{1} \mathcal{R} H$.
We now state a number of propositions:
(12) For all F, G holds $(\neg F)(1)=0$ and $(F \wedge G)(1)=1$ and $(F \vee G)(1)=2$ and $(\mathcal{X} F)(1)=3$ and $(F \mathcal{U} G)(1)=4$ and $(F \mathcal{R} G)(1)=5$.
(13) H is an immediate constituent of $\neg F$ iff $H=F$.
(14) H is an immediate constituent of $\mathcal{X} F$ iff $H=F$.
(15) H is an immediate constituent of $F \wedge G$ iff $H=F$ or $H=G$.
(16) H is an immediate constituent of $F \vee G$ iff $H=F$ or $H=G$.
(17) H is an immediate constituent of $F \mathcal{U} G$ iff $H=F$ or $H=G$.
(18) H is an immediate constituent of $F \mathcal{R} G$ iff $H=F$ or $H=G$.
(19) If F is atomic, then H is not an immediate constituent of F.
(20) If F is negative, then H is an immediate constituent of F iff $H=\operatorname{Arg}(F)$.
(21) If F has next operator, then H is an immediate constituent of F iff $H=\operatorname{Arg}(F)$.
(22) If F is conjunctive, then H is an immediate constituent of F iff $H=$ Left $\operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(23) If F is disjunctive, then H is an immediate constituent of F iff $H=$ Left $\operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(24) If F has until operator, then H is an immediate constituent of F iff $H=\operatorname{Left} \operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(25) If F has release operator, then H is an immediate constituent of F iff $H=\operatorname{Left} \operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(26) Suppose H is an immediate constituent of F. Then F is either negative, or conjunctive, or disjunctive, or has next operator, or until operator, or
release operator.
In the sequel L denotes a finite sequence.
Let us consider H, F. We say that H is a subformula of F if and only if the condition (Def. 22) is satisfied.
(Def. 22) There exist n, L such that
(i) $1 \leq n$,
(ii) $\operatorname{len} L=n$,
(iii) $L(1)=H$,
(iv) $L(n)=F$, and
(v) for every k such that $1 \leq k<n$ there exist H_{1}, F_{1} such that $L(k)=H_{1}$ and $L(k+1)=F_{1}$ and H_{1} is an immediate constituent of F_{1}.
We now state the proposition
(27) H is a subformula of H.

Let us consider H, F. We say that H is a proper subformula of F if and only if:
(Def. 23) H is a subformula of F and $H \neq F$.
One can prove the following propositions:
(28) If H is an immediate constituent of F, then len $H<\operatorname{len} F$.
(29) If H is an immediate constituent of F, then H is a proper subformula of F.
(30) If G is either negative or has next operator, then $\operatorname{Arg}(G)$ is a subformula of G.
(31) Suppose G is either conjunctive or disjunctive or has until operator or release operator. Then $\operatorname{Left} \operatorname{Arg}(G)$ is a subformula of G and $\operatorname{Right} \operatorname{Arg}(G)$ is a subformula of G.
(32) If H is a proper subformula of F, then len $H<\operatorname{len} F$.
(33) If H is a proper subformula of F, then there exists G which is an immediate constituent of F.
(34) If F is a proper subformula of G and G is a proper subformula of H, then F is a proper subformula of H.
(35) If F is a subformula of G and G is a subformula of H, then F is a subformula of H.
(36) If G is a subformula of H and H is a subformula of G, then $G=H$.
(37) If G is either negative or has next operator and F is a proper subformula of G, then F is a subformula of $\operatorname{Arg}(G)$.
(38) Suppose that
(i) G is either conjunctive or disjunctive or has until operator or release operator, and
(ii) F is a proper subformula of G.

Then F is a subformula of $\operatorname{Left} \operatorname{Arg}(G)$ or a subformula of $\operatorname{Right} \operatorname{Arg}(G)$.
(39) If F is a proper subformula of $\neg H$, then F is a subformula of H.
(40) If F is a proper subformula of $\mathcal{X} H$, then F is a subformula of H.
(41) If F is a proper subformula of $G \wedge H$, then F is a subformula of G or a subformula of H.
(42) If F is a proper subformula of $G \vee H$, then F is a subformula of G or a subformula of H.
(43) If F is a proper subformula of $G \mathcal{U} H$, then F is a subformula of G or a subformula of H.
(44) If F is a proper subformula of $G \mathcal{R} H$, then F is a subformula of G or a subformula of H.
Let us consider H. The functor Subformulae H yields a set and is defined by:
(Def. 24) $\quad a \in$ Subformulae H iff there exists F such that $F=a$ and F is a subformula of H.
One can prove the following proposition
(45) $G \in$ Subformulae H iff G is a subformula of H.

Let us consider H. Observe that Subformulae H is non empty.
Next we state two propositions:
(46) If F is a subformula of H, then Subformulae $F \subseteq$ Subformulae H.
(47) If a is a subset of Subformulae H, then a is a subset of $\mathrm{WFF}_{\text {LTL }}$.

In this article we present several logical schemes. The scheme LTLInd concerns a unary predicate \mathcal{P}, and states that:

For every H holds $\mathcal{P}[H]$
provided the following conditions are satisfied:

- For every H such that H is atomic holds $\mathcal{P}[H]$,
- For every H such that H is either negative or has next operator and $\mathcal{P}[\operatorname{Arg}(H)]$ holds $\mathcal{P}[H]$, and
- Let given H. Suppose H is either conjunctive or disjunctive or has until operator or release operator and $\mathcal{P}[\operatorname{Left} \operatorname{Arg}(H)]$ and $\mathcal{P}[\operatorname{Right} \operatorname{Arg}(H)]$. Then $\mathcal{P}[H]$.
The scheme LTLCompInd concerns a unary predicate \mathcal{P}, and states that:
For every H holds $\mathcal{P}[H]$
provided the following condition is met:
- For every H such that for every F such that F is a proper subformula of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.
Let x be a set. The functor Cast ${ }_{\text {LTL }} x$ yielding an LTL-formula is defined by:
(Def. 25) Cast $_{\text {LTL }} x=\left\{\begin{array}{l}x, \text { if } x \in \mathrm{WFF}_{\mathrm{LTL}}, \\ \text { atom. } 0, \text { otherwise }\end{array}\right.$

We introduce LTL-model structures which are systems
< assignations, basic assignations, a conjunction, a disjunction, a negation, a next-operation, an until-operation, a release-operation \rangle,
where the assignations constitute a non empty set, the basic assignations constitute a non empty subset of the assignations, the conjunction is a binary operation on the assignations, the disjunction is a binary operation on the assignations, the negation is a unary operation on the assignations, the next-operation is a unary operation on the assignations, the until-operation is a binary operation on the assignations, and the release-operation is a binary operation on the assignations.

Let V be an LTL-model structure. An assignation of V is an element of the assignations of V.

The subset atomic LTLL of $\mathrm{WFF}_{\text {LTL }}$ is defined by:
(Def. 26) atomic $_{\text {LTL }}=\{x ; x$ ranges over LTL-formulae: x is atomic $\}$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let f be a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V. We say that f is an evaluation for K_{1} if and only if the condition (Def. 27) is satisfied.
(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then $f(H)=K_{1}(H)$,
(ii) if H is negative, then $f(H)=($ the negation of $V)(f(\operatorname{Arg}(H)))$,
(iii) if H is conjunctive, then $f(H)=($ the conjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(iv) if H is disjunctive, then $f(H)=($ the disjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(v) if H has next operator, then $f(H)=$ (the next-operation of $V)(f(\operatorname{Arg}(H)))$,
(vi) if H has until operator, then $f(H)=$ (the until-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$, and
(vii) if H has release operator, then $f(H)=$ (the release-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, let f be a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V, and let n be a natural number. We say that f is a n-preevaluation for K_{1} if and only if the condition (Def. 28) is satisfied.
(Def. 28) Let H be an LTL-formula such that len $H \leq n$. Then
(i) if H is atomic, then $f(H)=K_{1}(H)$,
(ii) if H is negative, then $f(H)=($ the negation of $V)(f(\operatorname{Arg}(H)))$,
(iii) if H is conjunctive, then $f(H)=($ the conjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(iv) if H is disjunctive, then $f(H)=($ the disjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(v) if H has next operator, then $f(H)=$ (the next-operation of $V)(f(\operatorname{Arg}(H)))$,
(vi) if H has until operator, then $f(H)=$ (the until-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$, and
(vii) if H has release operator, then $f(H)=$ (the release-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{RightArg}(H)))$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, let f, h be functions from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V, let n be a natural number, and let H be an LTL-formula. The functor $\operatorname{Graft} \operatorname{Eval}\left(V, K_{1}, f, h, n, H\right)$ yields a set and is defined by:
(Def. 29) GraftEval $\left(V, K_{1}, f, h, n, H\right)$
$\left\{\begin{array}{l}f(H), \text { if len } H>n+1, \\ K_{1}(H), \text { if len } H=n+1 \text { and } H \text { is atomic, }\end{array}\right.$ (the negation of $V)(h(\operatorname{Arg}(H)))$, if len $H=n+1$ and H is negative, (the conjunction of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H is conjunctive,
(the disjunction of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$,
if len $H=n+1$ and H is disjunctive,
$=\{\quad($ the next-operation of $V)(h(\operatorname{Arg}(H)))$, if len $H=n+1$ and H has next operator, (the until-operation of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H has until operator, (the release-operation of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H has release operator, $h(H)$, if len $H<n+1$,
\emptyset, otherwise.
We adopt the following convention: V denotes an LTL-model structure, K_{1} denotes a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and f, f_{1}, f_{2} denote functions from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V.

Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let n be a natural number. The functor $\operatorname{EvalSet}\left(V, K_{1}, n\right)$ yields a non empty set and is defined by:
(Def. 30) EvalSet $\left(V, K_{1}, n\right)=\left\{h ; h\right.$ ranges over functions from $\mathrm{WFF}_{\mathrm{LTL}}$ into the assignations of $V: h$ is a n-pre-evaluation for $\left.K_{1}\right\}$.
Let V be an LTL-model structure, let v_{0} be an element of the assignations of V, and let x be a set. The functor $\operatorname{CastEval}\left(V, x, v_{0}\right)$ yielding a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V is defined by:
(Def. 31) CastEval $\left(V, x, v_{0}\right)=\left\{\begin{array}{l}x, \text { if } x \in(\text { the assignations of } V)^{\mathrm{WFF}_{\mathrm{LTL}}}, \\ \mathrm{WFF}_{\mathrm{LTL}} \longmapsto v_{0}, \text { otherwise. }\end{array}\right.$

Let V be an LTL-model structure and let K_{1} be a function from atomic LTL $^{\text {L }}$ into the basic assignations of V. The functor EvalFamily $\left(V, K_{1}\right)$ yielding a non empty set is defined by the condition (Def. 32).
(Def. 32) Let p be a set. Then $p \in \operatorname{EvalFamily}\left(V, K_{1}\right)$ if and only if the following conditions are satisfied:
(i) $\quad p \in 2^{(\text {the assignations of } V)^{\mathrm{WFF}_{\text {LTL }}}}$, and
(ii) there exists a natural number n such that $p=\operatorname{EvalSet}\left(V, K_{1}, n\right)$.

We now state two propositions:
(48) There exists f which is an evaluation for K_{1}.
(49) If f_{1} is an evaluation for K_{1} and f_{2} is an evaluation for K_{1}, then $f_{1}=f_{2}$.

Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let H be an LTL-formula. The functor Evaluate $\left(H, K_{1}\right)$ yields an assignation of V and is defined by:
(Def. 33) There exists a function f from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V such that f is an evaluation for K_{1} and Evaluate $\left(H, K_{1}\right)=f(H)$.
Let V be an LTL-model structure and let f be an assignation of V. The functor $\neg f$ yielding an assignation of V is defined by:
(Def. 34) $\neg f=($ the negation of $V)(f)$.
Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \wedge g$ yields an assignation of V and is defined by:
(Def. 35) $f \wedge g=($ the conjunction of $V)(f, g)$.
The functor $f \vee g$ yields an assignation of V and is defined as follows:
(Def. 36) $f \vee g=($ the disjunction of $V)(f, g)$.
Let V be an LTL-model structure and let f be an assignation of V. The functor $\mathcal{X} f$ yielding an assignation of V is defined by:
(Def. 37) $\mathcal{X} f=($ the next-operation of $V)(f)$.
Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \mathcal{U} g$ yielding an assignation of V is defined by:
(Def. 38) $f \mathcal{U} g=($ the until-operation of $V)(f, g)$.
The functor $f \mathcal{R} g$ yields an assignation of V and is defined as follows:
(Def. 39) $f \mathcal{R} g=($ the release-operation of $V)(f, g)$.
One can prove the following propositions:
(50) Evaluate $\left(\neg H, K_{1}\right)=\neg \operatorname{Evaluate}\left(H, K_{1}\right)$.
(51) Evaluate $\left(H_{1} \wedge H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \wedge \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(52) Evaluate $\left(H_{1} \vee H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \vee \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(53) Evaluate $\left(\mathcal{X} H, K_{1}\right)=\mathcal{X}$ Evaluate $\left(H, K_{1}\right)$.
(54) Evaluate $\left(H_{1} \mathcal{U} H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \mathcal{U} \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(55)

Evaluate $\left(H_{1} \mathcal{R} H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \mathcal{R}$ Evaluate $\left(H_{2}, K_{1}\right)$.

Let S be a non empty set. The infinite sequences of S yielding a non empty set is defined by:
(Def. 40) The infinite sequences of $S=S^{\mathbb{N}}$.
Let S be a non empty set and let t be a sequence of S. The functor CastSeq t yields an element of the infinite sequences of S and is defined by:
(Def. 41) CastSeq $t=t$.
Let S be a non empty set and let t be a set. Let us assume that t is an element of the infinite sequences of S. The functor $\operatorname{CastSeq}(t, S)$ yielding a sequence of S is defined by:
(Def. 42) $\operatorname{CastSeq}(t, S)=t$.
Let S be a non empty set, let t be a sequence of S, and let k be a natural number. The functor $\operatorname{Shift}(t, k)$ yielding a sequence of S is defined as follows:
(Def. 43) For every natural number n holds $(\operatorname{Shift}(t, k))(n)=t(n+k)$.
Let S be a non empty set, let t be a set, and let k be a natural number. The functor $\operatorname{Shift}(t, k, S)$ yielding an element of the infinite sequences of S is defined as follows:
(Def. 44) $\quad \operatorname{Shift}(t, k, S)=\operatorname{CastSeq} \operatorname{Shift}(\operatorname{CastSeq}(t, S), k)$.
Let S be a non empty set, let t be an element of the infinite sequences of S, and let k be a natural number. The functor $\operatorname{Shift}(t, k)$ yielding an element of the infinite sequences of S is defined as follows:
(Def. 45) $\quad \operatorname{Shift}(t, k)=\operatorname{Shift}(t, k, S)$.
Let S be a non empty set and let f be a set. The functor $\operatorname{Not}_{0}(f, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 46).
(Def. 46) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\neg \operatorname{Castboolean}(\operatorname{Fid}(f$, the infinite sequences of $S))(t)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Not}_{0}(f, S)\right.\right.$, the infinite sequences of $\left.\left.S\right)\right)(t)=$ true.
Let S be a non empty set. The functor Not S yielding a unary operation on ModelSP (the infinite sequences of S) is defined by:
(Def. 47) For every set f such that $f \in \operatorname{ModelSP}$ (the infinite sequences of S) holds $(\operatorname{Not} S)(f)=\operatorname{Not}_{0}(f, S)$.
Let S be a non empty set, let f be a function from the infinite sequences of S into Boolean, and let t be a set. The functor $\operatorname{Next-univ}(t, f)$ yields an element of Boolean and is defined as follows:
(Def. 48) Next-univ $(t, f)=\left\{\begin{array}{c}\text { true, if } t \text { is an element of the infinite sequences } \\ \text { of } S \text { and } f(\operatorname{Shift}(t, 1, S))=\text { true, } \\ \text { false, otherwise. }\end{array}\right.$
Let S be a non empty set and let f be a set. The functor $\operatorname{Next}_{0}(f, S)$ yielding an element of ModelSP (the infinite sequences of S) is defined by the condition
(Def. 49).
(Def. 49) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\operatorname{Next-univ}(t, \operatorname{Fid}(f$, the infinite sequences of $S))=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Next}_{0}(f, S)\right.\right.$, the infinite sequences of $\left.\left.S\right)\right)(t)=$ true.
Let S be a non empty set. The functor Next S yields a unary operation on ModelSP (the infinite sequences of S) and is defined as follows:
(Def. 50) For every set f such that $f \in \operatorname{ModelSP}$ (the infinite sequences of S) holds $(\operatorname{Next} S)(f)=\operatorname{Next}_{0}(f, S)$.
Let S be a non empty set and let f, g be sets. The functor $\operatorname{And}_{0}(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 51).
(Def. 51) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then Castboolean $(\operatorname{Fid}(f$, the infinite sequences of $S))(t) \wedge$ Castboolean $(\operatorname{Fid}(g$, the infinite sequences of $S))(t)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{And}_{0}(f, g, S)\right.\right.$, the infinite sequences of $S)(t)=$ true.
Let S be a non empty set. The functor And S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).
(Def. 52) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in$ ModelSP (the infinite sequences of S). Then $($ And $S)(f, g)=$ $\operatorname{And}_{0}(f, g, S)$.
Let S be a non empty set, let f, g be functions from the infinite sequences of S into Boolean, and let t be a set. The functor $\operatorname{Until-univ}(t, f, g, S)$ yields an element of Boolean and is defined as follows:
(Def. 53) Until-univ $(t, f, g, S)=\{$ true, if t is an element of the infinite sequences of S and there exists a natural number m such that for every natural number j such that $j<m$ holds $f(\operatorname{Shift}(t, j, S))=$ true and $g(\operatorname{Shift}(t, m, S))=$ true, false, otherwise.
Let S be a non empty set and let f, g be sets. The functor $\operatorname{Until}{ }_{0}(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 54).
(Def. 54) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\operatorname{Until}-u \operatorname{niv}(t, \operatorname{Fid}(f$, the infinite sequences of $S), \operatorname{Fid}(g$, the infinite sequences of $S), S)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Until}_{0}(f, g, S)\right.\right.$, the infinite sequences of $S)(t)=$ true.
Let S be a non empty set. The functor Until S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).
(Def. 55) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in \operatorname{ModelSP}$ (the infinite sequences of S). Then (Until $S)(f, g)=$
$\operatorname{Until}_{0}(f, g, S)$.
Let S be a non empty set. The functor \vee_{S} yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).
(Def. 56) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of $S)$ and $g \in \operatorname{ModelSP}($ the infinite sequences of $S)$. Then $\vee_{S}(f, g)=$ $(\operatorname{Not} S)((\operatorname{And} S)((\operatorname{Not} S)(f),(\operatorname{Not} S)(g)))$.
The functor Release S yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 57).
(Def. 57) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in \operatorname{ModelSP}$ (the infinite sequences of S). Then (Release $S)(f, g)=$ $(\operatorname{Not} S)((\operatorname{Until} S)((\operatorname{Not} S)(f),(\operatorname{Not} S)(g)))$.
Let S be a non empty set and let B_{1} be a non empty subset of ModelSP (the infinite sequences of S). The functor $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$ yields an LTL-model structure and is defined as follows:
(Def. 58) $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)=\left\langle\operatorname{ModelSP}(\right.$ the infinite sequences of $S), B_{1}$, And S, $\vee_{S}, \operatorname{Not} S$, Next S, Until S, Release $\left.S\right\rangle$.
In the sequel B_{1} denotes a non empty subset of ModelSP (the infinite sequences of S), t denotes an element of the infinite sequences of S, and f, g denote assignations of $\operatorname{Model}_{\mathrm{LTL}}\left(S, B_{1}\right)$.

Let S be a non empty set, let B_{1} be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$. The predicate $t \models f$ is defined by:
(Def. 59) $\quad(\operatorname{Fid}(f$, the infinite sequences of $S))(t)=$ true.
Let S be a non empty set, let B_{1} be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$. We introduce $t \not \vDash f$ as an antonym of $t \models f$.

The following propositions are true:
(56) $f \vee g=\neg(\neg f \wedge \neg g)$ and $f \mathcal{R} g=\neg(\neg f \mathcal{U} \neg g)$.

$$
\begin{equation*}
t \models \neg f \text { iff } t \not \models f . \tag{57}
\end{equation*}
$$

$t \models f \wedge g$ iff $t \models f$ and $t \models g$.
$t \models \mathcal{X} f$ iff $\operatorname{Shift}(t, 1) \models f$.
(60) $t \vDash f \mathcal{U} g$ if and only if there exists a natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(t, j) \models f$ and $\operatorname{Shift}(t, m) \models g$.
(61) $t \models f \vee g$ iff $t \models f$ or $t \models g$.
(62) $t \models f \mathcal{R} g$ if and only if for every natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(t, j) \models \neg f$ holds $\operatorname{Shift}(t, m) \models g$.

The non empty set AtomicFamily is defined as follows:
(Def. 60) AtomicFamily $=2^{\text {atomic }_{\text {LTL }}}$.
Let a, t be sets. The functor AtomicFunc (a, t) yielding an element of Boolean is defined as follows:
$\left(\right.$ Def. 61) AtomicFunc $(a, t)=\left\{\begin{array}{c}\text { true, if } t \in \text { the infinite sequences of AtomicFamily } \\ \text { and } a \in(\operatorname{CastSeq}(t, \text { AtomicFamily }))(0), \\ \text { false, otherwise. }\end{array}\right.$
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the infinite sequences of AtomicFamily) and is defined by:
(Def. 62) For every set t such that $t \in$ the infinite sequences of AtomicFamily holds $(\operatorname{Fid}($ AtomicAsgn a, the infinite sequences of AtomicFamily $))(t)=$ AtomicFunc (a, t).
The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences of AtomicFamily) is defined by:
(Def. 63) AtomicBasicAsgn $=\{x \in \operatorname{ModelSP}$ (the infinite sequences of AtomicFamily): $\bigvee_{a \text { :set }} x=$ AtomicAsgn $\left.a\right\}$.
The function AtomicKai from atomic LTL into the basic assignations of Model ${ }_{\text {LTL }}$ (AtomicFamily, AtomicBasicAsgn) is defined as follows:
(Def. 64) For every set a such that $a \in$ atomic $_{\text {LTL }}$ holds (AtomicKai) $(a)=$ AtomicAsgn a.
Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. The predicate $r \models H$ is defined by:
(Def. 65) $\quad r \equiv \operatorname{Evaluate(~} H$, AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. We introduce $r \not \vDash H$ as an antonym of $r \mid=H$.

Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of $\mathrm{WFF}_{\mathrm{LTL}}$. The predicate $r \models W$ is defined by:
(Def. 66) For every LTL-formula H such that $H \in W$ holds $r \models H$.
Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of $W_{F F}$ LTL . We introduce $r \not \models W$ as an antonym of $r \models W$.

Let W be a subset of $W_{F F}$ LTL . The functor $\mathcal{X} W$ yielding a subset of $\mathrm{WFF}_{\text {LTL }}$ is defined as follows:
(Def. 67) $\mathcal{X} W=\left\{x ; x\right.$ ranges over LTL-formulae: $\bigvee_{u: \text { LTL-formula }}(u \in W \wedge x=$ $\mathcal{X} u)\}$.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:
(63) If H is atomic, then $r \neq H$ iff $H \in(\operatorname{CastSeq}(r$, AtomicFamily $))(0)$.
(64) $r \neq \neg H$ iff $r \notin H$.
(65) $r \models H_{1} \wedge H_{2}$ iff $r \models H_{1}$ and $r \models H_{2}$.
(66)

$$
r \models H_{1} \vee H_{2} \text { iff } r \models H_{1} \text { or } r \models H_{2} .
$$

$$
r \models \mathcal{X} H \text { iff } \operatorname{Shift}(r, 1) \models H
$$

$r \vDash H_{1} \mathcal{U} H_{2}$ if and only if there exists a natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(r, j) \models H_{1}$ and $\operatorname{Shift}(r, m) \models H_{2}$.
(69) $r \models H_{1} \mathcal{R} H_{2}$ if and only if for every natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(r, j) \models \neg H_{1}$ holds $\operatorname{Shift}(r, m) \models H_{2}$.
(70) $r \models \neg\left(H_{1} \vee H_{2}\right)$ iff $r \models \neg H_{1} \wedge \neg H_{2}$.
(72) $\quad r \models H_{1} \mathcal{R} H_{2}$ iff $r \models \neg\left(\neg H_{1} \mathcal{U} \neg H_{2}\right)$.
(73) $r \not \models \neg H$ iff $r \models H$.

$$
\begin{equation*}
r \models \mathcal{X} \neg H \text { iff } r \models \neg \mathcal{X} H \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
r \models H_{1} \mathcal{U} H_{2} \text { iff } r \models H_{2} \vee H_{1} \wedge \mathcal{X}\left(H_{1} \mathcal{U} H_{2}\right) \tag{75}
\end{equation*}
$$

$$
r \models H_{1} \mathcal{R} H_{2} \text { iff } r \equiv H_{1} \wedge H_{2} \vee H_{2} \wedge \mathcal{X}\left(H_{1} \mathcal{R} H_{2}\right)
$$

In the sequel W is a subset of $W_{F F}$ LTL.
One can prove the following propositions:
(77) $\quad r \vDash \mathcal{X} W$ iff $\operatorname{Shift}(r, 1) \models W$.
(78)(i) If H is atomic, then H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(ii) if H is negative, then H is not atomic and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(iii) if H is conjunctive, then H is not atomic and H is not negative and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(iv) if H is disjunctive, then H is not atomic and H is not negative and H is not conjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(v) if H has next operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have until operator and H does not have release operator,
(vi) if H has until operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have release operator, and
(vii) if H has release operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator.
(79) For every element t of the infinite sequences of S holds $\operatorname{Shift}(t, 0)=t$.
(80) For every element s_{1} of the infinite sequences of S holds $\operatorname{Shift}\left(\operatorname{Shift}\left(s_{1}, k\right), n\right)=\operatorname{Shift}\left(s_{1}, n+k\right)$.
(81) For every sequence s_{1} of S holds CastSeq(CastSeq $\left.s_{1}, S\right)=s_{1}$.
(82) For every element s_{1} of the infinite sequences of S holds $\operatorname{CastSeq} \operatorname{CastSeq}\left(s_{1}, S\right)=s_{1}$.
(83) If $H, \neg H \in W$, then $r \not \equiv W$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received April 21, 2008

