Model Checking. Part II

Kazuhisa Ishida Shinshu University Nagano, Japan

Summary. This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].

 $\mathrm{MML} \ \mathrm{identifier:} \ \mathtt{MODELC_2}, \ \mathrm{version:} \ \mathtt{7.9.01} \ \mathtt{4.101.1015}$

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and terminology for this paper.

Let x be a set. The functor CastNat x yielding a natural number is defined by:

(Def. 1) CastNat $x = \begin{cases} x, & \text{if } x \text{ is a natural number,} \\ 0, & \text{otherwise.} \end{cases}$

Let W_1 be a set. A sequence of W_1 is a function from \mathbb{N} into W_1 .

For simplicity, we adopt the following rules: k, n denote natural numbers, a denotes a set, D, S denote non empty sets, and p, q denote finite sequences of elements of \mathbb{N} .

Let us consider n. The functor atom. n yielding a finite sequence of elements of \mathbb{N} is defined as follows:

(Def. 2) atom. $n = \langle 6 + n \rangle$.

Let us consider p. The functor $\neg p$ yielding a finite sequence of elements of \mathbb{N} is defined by:

(Def. 3) $\neg p = \langle 0 \rangle \cap p$.

Let us consider q. The functor $p \wedge q$ yields a finite sequence of elements of \mathbb{N} and is defined by:

(Def. 4) $p \wedge q = \langle 1 \rangle \cap p \cap q$.

The functor $p \lor q$ yielding a finite sequence of elements of \mathbb{N} is defined by:

C 2008 University of Białystok ISSN 1426-2630(p), 1898-9934(e) (Def. 5) $p \lor q = \langle 2 \rangle \cap p \cap q$.

Let us consider p. The functor $\mathcal{X} p$ yielding a finite sequence of elements of \mathbb{N} is defined as follows:

(Def. 6) $\mathcal{X} p = \langle 3 \rangle \cap p.$

Let us consider q. The functor $p \mathcal{U} q$ yielding a finite sequence of elements of \mathbb{N} is defined by:

(Def. 7) $p \mathcal{U} q = \langle 4 \rangle \cap p \cap q.$

The functor $p \mathcal{R} q$ yields a finite sequence of elements of \mathbb{N} and is defined as follows:

(Def. 8) $p \mathcal{R} q = \langle 5 \rangle \cap p \cap q.$

The non empty set WFF_{LTL} is defined by the conditions (Def. 9).

(Def. 9) For every a such that $a \in WFF_{LTL}$ holds a is a finite sequence of elements of N and for every n holds atom. $n \in WFF_{LTL}$ and for every p such that $p \in WFF_{LTL}$ holds $\neg p \in WFF_{LTL}$ and for all p, q such that p, $q \in WFF_{LTL}$ holds $p \land q \in WFF_{LTL}$ and for all p, q such that p, $q \in WFF_{LTL}$ holds $p \lor q \in WFF_{LTL}$ and for every p such that $p \in WFF_{LTL}$ holds $\mathcal{X} p \in$ WFF_{LTL} and for all p, q such that $p, q \in WFF_{LTL}$ holds $\mathcal{X} p \in$ WFF_{LTL} and for all p, q such that p, $q \in WFF_{LTL}$ holds $p\mathcal{U} q \in WFF_{LTL}$ and for all p, q such that p, $q \in WFF_{LTL}$ holds $p\mathcal{U} q \in WFF_{LTL}$ and for every D such that for every a such that $a \in D$ holds a is a finite sequence of elements of N and for every n holds atom. $n \in D$ and for every p such that $p \in D$ holds $\neg p \in D$ and for all p, q such that p, $q \in D$ holds $p \land q \in D$ and for all p, q such that p, $q \in D$ holds $p \lor q \in D$ holds $p\mathcal{U} q \in D$ and for all p, q such that p, $q \in D$ holds $p \lor q \in D$ holds $p\mathcal{U} q \in D$ and for all p, q such that p, $q \in D$ holds $p \lor q \in D$ holds $p\mathcal{U} q \in D$ and for all p, q such that p, $q \in D$ holds $p \And q \in D$ holds $p\mathcal{U} q \in D$ and for all p, q such that p, $q \in D$ holds $p \And q \in D$ holds $p \And Q \in D$ and for all p, q such that p, $q \in D$ holds $p \And Q \in D$ holds $p \amalg Q \in D$ and for all p, q such that p, q \in D holds $p \And Q \in D$ holds $p \And Q \in D$

Let I_1 be a finite sequence of elements of \mathbb{N} . We say that I_1 is LTL-formulalike if and only if:

(Def. 10) I_1 is an element of WFF_{LTL}.

Let us observe that there exists a finite sequence of elements of $\mathbb N$ which is LTL-formula-like.

An LTL-formula is a LTL-formula-like finite sequence of elements of \mathbb{N} . Next we state the proposition

(1) a is an LTL-formula iff $a \in WFF_{LTL}$.

In the sequel F, F_1, G, H, H_1, H_2 denote LTL-formulae.

Let us consider n. Observe that atom. n is LTL-formula-like.

Let us consider H. Note that $\neg H$ is LTL-formula-like and $\mathcal{X} H$ is LTL-formula-like. Let us consider G. One can check the following observations:

- * $H \wedge G$ is LTL-formula-like,
- * $H \lor G$ is LTL-formula-like,
- * $H \mathcal{U} G$ is LTL-formula-like, and

* $H \mathcal{R} G$ is LTL-formula-like.

Let us consider H. We say that H is atomic if and only if:

- (Def. 11) There exists n such that H = atom. n. We say that H is negative if and only if:
- (Def. 12) There exists H_1 such that $H = \neg H_1$. We say that H is conjunctive if and only if:
- (Def. 13) There exist F, G such that $H = F \wedge G$. We say that H is disjunctive if and only if:
- (Def. 14) There exist F, G such that $H = F \lor G$. We say that H has *next* operator if and only if:
- (Def. 15) There exists H_1 such that $H = \chi H_1$. We say that H has *until* operator if and only if:
- (Def. 16) There exist F, G such that $H = F \mathcal{U} G$. We say that H has *release* operator if and only if:
- (Def. 17) There exist F, G such that $H = F \mathcal{R} G$.

Next we state two propositions:

- (2) *H* is either atomic, or negative, or conjunctive, or disjunctive, or has *next* operator, or *until* operator, or *release* operator.
- (3) $1 \leq \operatorname{len} H$.

Let us consider H. Let us assume that H is either negative or has *next* operator. The functor Arg(H) yields an LTL-formula and is defined by:

(Def. 18)(i) $\neg \operatorname{Arg}(H) = H$ if H is negative,

(ii) $\mathcal{X}\operatorname{Arg}(H) = H$, otherwise.

Let us consider H. Let us assume that H is either conjunctive or disjunctive or has *until* operator or *release* operator. The functor LeftArg(H) yielding an LTL-formula is defined as follows:

- (Def. 19)(i) There exists H_1 such that LeftArg $(H) \wedge H_1 = H$ if H is conjunctive,
 - (ii) there exists H_1 such that $\text{LeftArg}(H) \vee H_1 = H$ if H is disjunctive,
 - (iii) there exists H_1 such that $\operatorname{LeftArg}(H)\mathcal{U}H_1 = H$ if H has *until* operator,
 - (iv) there exists H_1 such that LeftArg $(H) \mathcal{R} H_1 = H$, otherwise.

The functor $\operatorname{RightArg}(H)$ yields an LTL-formula and is defined by:

(Def. 20)(i) There exists H_1 such that $H_1 \wedge \operatorname{RightArg}(H) = H$ if H is conjunctive,

- (ii) there exists H_1 such that $H_1 \vee \operatorname{RightArg}(H) = H$ if H is disjunctive,
- (iii) there exists H_1 such that $H_1 \mathcal{U}$ RightArg(H) = H if H has until operator,
- (iv) there exists H_1 such that $H_1 \mathcal{R}$ RightArg(H) = H, otherwise. The following propositions are true:
- (4) If H is negative, then $H = \neg \operatorname{Arg}(H)$.

- (5) If H has next operator, then $H = \mathcal{X} \operatorname{Arg}(H)$.
- (6) If H is conjunctive, then $H = \text{LeftArg}(H) \land \text{RightArg}(H)$.
- (7) If H is disjunctive, then $H = \text{LeftArg}(H) \lor \text{RightArg}(H)$.
- (8) If H has until operator, then $H = \text{LeftArg}(H) \mathcal{U} \text{RightArg}(H)$.
- (9) If H has release operator, then $H = \text{LeftArg}(H) \mathcal{R} \text{RightArg}(H)$.
- (10) If H is either negative or has *next* operator, then len H = 1 + len Arg(H)and len Arg(H) < len H.
- (11) Suppose H is either conjunctive or disjunctive or has *until* operator or *release* operator. Then len H = 1 + len LeftArg(H) + len RightArg(H) and len LeftArg(H) < len H and len RightArg(H) < len H.

Let us consider H, F. We say that H is an immediate constituent of F if and only if:

(Def. 21) $F = \neg H$ or $F = \mathcal{X}H$ or there exists H_1 such that $F = H \wedge H_1$ or $F = H_1 \wedge H$ or $F = H \vee H_1$ or $F = H_1 \vee H$ or $F = H \mathcal{U} H_1$ or $F = H_1 \mathcal{U} H$ or $F = H \mathcal{R} H_1$ or $F = H_1 \mathcal{R} H$.

We now state a number of propositions:

- (12) For all F, G holds $(\neg F)(1) = 0$ and $(F \land G)(1) = 1$ and $(F \lor G)(1) = 2$ and $(\mathcal{X} F)(1) = 3$ and $(F \mathcal{U} G)(1) = 4$ and $(F \mathcal{R} G)(1) = 5$.
- (13) *H* is an immediate constituent of $\neg F$ iff H = F.
- (14) H is an immediate constituent of χF iff H = F.
- (15) *H* is an immediate constituent of $F \wedge G$ iff H = F or H = G.
- (16) *H* is an immediate constituent of $F \vee G$ iff H = F or H = G.
- (17) H is an immediate constituent of $F \mathcal{U} G$ iff H = F or H = G.
- (18) *H* is an immediate constituent of $F \mathcal{R} G$ iff H = F or H = G.
- (19) If F is atomic, then H is not an immediate constituent of F.
- (20) If F is negative, then H is an immediate constituent of F iff $H = \operatorname{Arg}(F)$.
- (21) If F has next operator, then H is an immediate constituent of F iff $H = \operatorname{Arg}(F)$.
- (22) If F is conjunctive, then H is an immediate constituent of F iff H = LeftArg(F) or H = RightArg(F).
- (23) If F is disjunctive, then H is an immediate constituent of F iff H = LeftArg(F) or H = RightArg(F).
- (24) If F has until operator, then H is an immediate constituent of F iff H = LeftArg(F) or H = RightArg(F).
- (25) If F has release operator, then H is an immediate constituent of F iff H = LeftArg(F) or H = RightArg(F).
- (26) Suppose H is an immediate constituent of F. Then F is either negative, or conjunctive, or disjunctive, or has *next* operator, or *until* operator, or

release operator.

In the sequel L denotes a finite sequence.

Let us consider H, F. We say that H is a subformula of F if and only if the condition (Def. 22) is satisfied.

(Def. 22) There exist n, L such that

(i) $1 \leq n$,

- (ii) $\operatorname{len} L = n,$
- (iii) L(1) = H,
- (iv) L(n) = F, and
- (v) for every k such that $1 \le k < n$ there exist H_1 , F_1 such that $L(k) = H_1$ and $L(k+1) = F_1$ and H_1 is an immediate constituent of F_1 .

We now state the proposition

(27) H is a subformula of H.

Let us consider H, F. We say that H is a proper subformula of F if and only if:

(Def. 23) H is a subformula of F and $H \neq F$.

One can prove the following propositions:

- (28) If H is an immediate constituent of F, then $\ln H < \ln F$.
- (29) If H is an immediate constituent of F, then H is a proper subformula of F.
- (30) If G is either negative or has *next* operator, then $\operatorname{Arg}(G)$ is a subformula of G.
- (31) Suppose G is either conjunctive or disjunctive or has *until* operator or *release* operator. Then LeftArg(G) is a subformula of G and RightArg(G) is a subformula of G.
- (32) If H is a proper subformula of F, then $\ln H < \ln F$.
- (33) If H is a proper subformula of F, then there exists G which is an immediate constituent of F.
- (34) If F is a proper subformula of G and G is a proper subformula of H, then F is a proper subformula of H.
- (35) If F is a subformula of G and G is a subformula of H, then F is a subformula of H.
- (36) If G is a subformula of H and H is a subformula of G, then G = H.
- (37) If G is either negative or has *next* operator and F is a proper subformula of G, then F is a subformula of $\operatorname{Arg}(G)$.
- (38) Suppose that
- (i) G is either conjunctive or disjunctive or has *until* operator or *release* operator, and
- (ii) F is a proper subformula of G.

Then F is a subformula of LeftArg(G) or a subformula of RightArg(G).

- (39) If F is a proper subformula of $\neg H$, then F is a subformula of H.
- (40) If F is a proper subformula of $\mathcal{X} H$, then F is a subformula of H.
- (41) If F is a proper subformula of $G \wedge H$, then F is a subformula of G or a subformula of H.
- (42) If F is a proper subformula of $G \vee H$, then F is a subformula of G or a subformula of H.
- (43) If F is a proper subformula of $G \mathcal{U} H$, then F is a subformula of G or a subformula of H.
- (44) If F is a proper subformula of $G \mathcal{R} H$, then F is a subformula of G or a subformula of H.

Let us consider H. The functor Subformulae H yields a set and is defined by:

(Def. 24) $a \in \text{Subformulae } H$ iff there exists F such that F = a and F is a subformula of H.

One can prove the following proposition

(45) $G \in$ Subformulae H iff G is a subformula of H.

Let us consider H. Observe that Subformulae H is non empty. Next we state two propositions:

- (46) If F is a subformula of H, then Subformulae $F \subseteq$ Subformulae H.
- (47) If a is a subset of Subformulae H, then a is a subset of WFF_{LTL}.

In this article we present several logical schemes. The scheme LTLInd concerns a unary predicate \mathcal{P} , and states that:

For every H holds $\mathcal{P}[H]$

provided the following conditions are satisfied:

- For every H such that H is atomic holds $\mathcal{P}[H]$,
- For every H such that H is either negative or has *next* operator and $\mathcal{P}[\operatorname{Arg}(H)]$ holds $\mathcal{P}[H]$, and
- Let given H. Suppose H is either conjunctive or disjunctive or has *until* operator or *release* operator and $\mathcal{P}[\text{LeftArg}(H)]$ and $\mathcal{P}[\text{RightArg}(H)]$. Then $\mathcal{P}[H]$.

The scheme LTLCompInd concerns a unary predicate \mathcal{P} , and states that: For every H holds $\mathcal{P}[H]$

provided the following condition is met:

• For every H such that for every F such that F is a proper subformula of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.

Let x be a set. The functor $\operatorname{Cast}_{\operatorname{LTL}} x$ yielding an LTL-formula is defined by:

(Def. 25) Cast_{LTL} $x = \begin{cases} x, \text{ if } x \in \text{WFF}_{\text{LTL}}, \\ \text{atom. 0, otherwise.} \end{cases}$

We introduce LTL-model structures which are systems

 \langle assignations, basic assignations, a conjunction, a disjunction, a negation, a next-operation, an until-operation, a release-operation $\rangle,$

where the assignations constitute a non empty set, the basic assignations constitute a non empty subset of the assignations, the conjunction is a binary operation on the assignations, the disjunction is a binary operation on the assignations, the negation is a unary operation on the assignations, the next-operation is a unary operation on the assignations, the until-operation is a binary operation on the assignations, and the release-operation is a binary operation on the assignations.

Let V be an LTL-model structure. An assignation of V is an element of the assignations of V.

The subset $atomic_{LTL}$ of WFF_{LTL} is defined by:

(Def. 26) atomic_{LTL} = {x; x ranges over LTL-formulae: x is atomic}.

Let V be an LTL-model structure, let K_1 be a function from $\operatorname{atomic}_{LTL}$ into the basic assignations of V, and let f be a function from WFF_{LTL} into the assignations of V. We say that f is an evaluation for K_1 if and only if the condition (Def. 27) is satisfied.

- (Def. 27) Let H be an LTL-formula. Then
 - (i) if H is atomic, then $f(H) = K_1(H)$,
 - (ii) if H is negative, then f(H) = (the negation of $V)(f(\operatorname{Arg}(H))),$
 - (iii) if H is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H))), f(RightArg(H))),
 - (iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H))), f(RightArg(H))),
 - (v) if H has next operator, then f(H) = (the next-operation of $V)(f(\operatorname{Arg}(H))),$
 - (vi) if *H* has *until* operator, then f(H) = (the until-operation of V)(f(LeftArg(H)), f(RightArg(H))), and
 - (vii) if H has release operator, then f(H) = (the release-operation of V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K_1 be a function from $\operatorname{atomic}_{LTL}$ into the basic assignations of V, let f be a function from WFF_{LTL} into the assignations of V, and let n be a natural number. We say that f is a n-preevaluation for K_1 if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let H be an LTL-formula such that len $H \leq n$. Then

- (i) if H is atomic, then $f(H) = K_1(H)$,
- (ii) if H is negative, then $f(H) = (\text{the negation of } V)(f(\operatorname{Arg}(H))),$
- (iii) if H is conjunctive, then f(H) = (the conjunction of V)(f(LeftArg(H))), f(RightArg(H))),

- (iv) if H is disjunctive, then f(H) = (the disjunction of V)(f(LeftArg(H))), f(RightArg(H))),
- (v) if H has next operator, then f(H) = (the next-operation of $V)(f(\operatorname{Arg}(H))),$
- (vi) if H has until operator, then f(H) = (the until-operation of V)(f(LeftArg(H)), f(RightArg(H))), and
- (vii) if H has release operator, then f(H) = (the release-operation of V)(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K_1 be a function from $\operatorname{atomic_{LTL}}$ into the basic assignations of V, let f, h be functions from WFF_{LTL} into the assignations of V, let n be a natural number, and let H be an LTL-formula. The functor GraftEval (V, K_1, f, h, n, H) yields a set and is defined by:

(Def. 29) GraftEval (V, K_1, f, h, n, H)

 $= \begin{cases} f(H), \text{ if } \text{len } H > n + 1, \\ K_1(H), \text{ if } \text{len } H = n + 1 \text{ and } H \text{ is atomic,} \\ (\text{the negation of } V)(h(\operatorname{Arg}(H))), \text{ if } \text{len } H = n + 1 \text{ and } H \text{ is negative,} \\ (\text{the conjunction of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ is conjunctive,} \\ (\text{the disjunction of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ is disjunctive,} \\ (\text{the next-operation of } V)(h(\operatorname{LeftArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ (\text{the until-operation of } V)(h(\operatorname{LeftArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ (\text{the until-operation of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ (\text{the release-operation of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ (\text{the release-operation of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ (\text{the release-operation of } V)(h(\operatorname{LeftArg}(H)), h(\operatorname{RightArg}(H))), \\ \text{ if } \text{len } H = n + 1 \text{ and } H \text{ has next operator,} \\ h(H), \text{ if } \text{len } H < n + 1, \\ \emptyset, \text{ otherwise.} \end{cases}$

We adopt the following convention: V denotes an LTL-model structure, K_1 denotes a function from $\operatorname{atomic}_{\mathrm{LTL}}$ into the basic assignations of V, and f, f_1 , f_2 denote functions from WFF_{LTL} into the assignations of V.

Let V be an LTL-model structure, let K_1 be a function from $\operatorname{atomic}_{\operatorname{LTL}}$ into the basic assignations of V, and let n be a natural number. The functor $\operatorname{EvalSet}(V, K_1, n)$ yields a non empty set and is defined by:

(Def. 30) EvalSet $(V, K_1, n) = \{h; h \text{ ranges over functions from WFF}_{LTL} \text{ into the assignations of } V: h \text{ is a } n\text{-pre-evaluation for } K_1\}.$

Let V be an LTL-model structure, let v_0 be an element of the assignations of V, and let x be a set. The functor CastEval (V, x, v_0) yielding a function from WFF_{LTL} into the assignations of V is defined by:

(Def. 31) CastEval
$$(V, x, v_0) = \begin{cases} x, \text{ if } x \in (\text{the assignations of } V)^{\text{WFF}_{\text{LTL}}}, \\ \text{WFF}_{\text{LTL}} \longmapsto v_0, \text{ otherwise.} \end{cases}$$

Let V be an LTL-model structure and let K_1 be a function from $\operatorname{atomic}_{\operatorname{LTL}}$ into the basic assignations of V. The functor $\operatorname{EvalFamily}(V, K_1)$ yielding a non empty set is defined by the condition (Def. 32).

- (Def. 32) Let p be a set. Then $p \in \text{EvalFamily}(V, K_1)$ if and only if the following conditions are satisfied:
 - (i) $p \in 2^{\text{(the assignations of } V)^{\text{WFF}_{\text{LTL}}}}$, and
 - (ii) there exists a natural number n such that $p = \text{EvalSet}(V, K_1, n)$.

We now state two propositions:

- (48) There exists f which is an evaluation for K_1 .
- (49) If f_1 is an evaluation for K_1 and f_2 is an evaluation for K_1 , then $f_1 = f_2$.

Let V be an LTL-model structure, let K_1 be a function from $\operatorname{atomic}_{\operatorname{LTL}}$ into the basic assignations of V, and let H be an LTL-formula. The functor $\operatorname{Evaluate}(H, K_1)$ yields an assignation of V and is defined by:

(Def. 33) There exists a function f from WFF_{LTL} into the assignations of V such that f is an evaluation for K_1 and Evaluate $(H, K_1) = f(H)$.

Let V be an LTL-model structure and let f be an assignation of V. The functor $\neg f$ yielding an assignation of V is defined by:

(Def. 34) $\neg f = (\text{the negation of } V)(f).$

Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \wedge g$ yields an assignation of V and is defined by:

(Def. 35) $f \wedge g = (\text{the conjunction of } V)(f, g).$

The functor $f \lor g$ yields an assignation of V and is defined as follows:

(Def. 36) $f \lor g = (\text{the disjunction of } V)(f, g).$

Let V be an LTL-model structure and let f be an assignation of V. The functor $\mathcal{X} f$ yielding an assignation of V is defined by:

(Def. 37) $\mathcal{X} f = (\text{the next-operation of } V)(f).$

Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \mathcal{U} g$ yielding an assignation of V is defined by:

(Def. 38) $f \mathcal{U} g = (\text{the until-operation of } V)(f, g).$

The functor $f \mathcal{R} g$ yields an assignation of V and is defined as follows:

(Def. 39) $f \mathcal{R} g = (\text{the release-operation of } V)(f, g).$

One can prove the following propositions:

- (50) Evaluate($\neg H, K_1$) = \neg Evaluate(H, K_1).
- (51) Evaluate $(H_1 \wedge H_2, K_1)$ = Evaluate $(H_1, K_1) \wedge$ Evaluate (H_2, K_1) .
- (52) Evaluate $(H_1 \lor H_2, K_1)$ = Evaluate $(H_1, K_1) \lor$ Evaluate (H_2, K_1) .
- (53) Evaluate $(\mathcal{X} H, K_1) = \mathcal{X}$ Evaluate (H, K_1) .
- (54) Evaluate $(H_1 \mathcal{U} H_2, K_1)$ = Evaluate $(H_1, K_1) \mathcal{U}$ Evaluate (H_2, K_1) .
- (55) Evaluate $(H_1 \mathcal{R} H_2, K_1)$ = Evaluate $(H_1, K_1) \mathcal{R}$ Evaluate (H_2, K_1) .

Let S be a non empty set. The infinite sequences of S yielding a non empty set is defined by:

(Def. 40) The infinite sequences of $S = S^{\mathbb{N}}$.

Let S be a non empty set and let t be a sequence of S. The functor CastSeq t yields an element of the infinite sequences of S and is defined by:

(Def. 41) CastSeq t = t.

Let S be a non empty set and let t be a set. Let us assume that t is an element of the infinite sequences of S. The functor CastSeq(t, S) yielding a sequence of S is defined by:

(Def. 42) CastSeq(t, S) = t.

Let S be a non empty set, let t be a sequence of S, and let k be a natural number. The functor Shift(t, k) yielding a sequence of S is defined as follows:

(Def. 43) For every natural number n holds (Shift(t,k))(n) = t(n+k).

Let S be a non empty set, let t be a set, and let k be a natural number. The functor Shift(t, k, S) yielding an element of the infinite sequences of S is defined as follows:

(Def. 44) $\operatorname{Shift}(t, k, S) = \operatorname{CastSeqShift}(\operatorname{CastSeq}(t, S), k).$

Let S be a non empty set, let t be an element of the infinite sequences of S, and let k be a natural number. The functor Shift(t, k) yielding an element of the infinite sequences of S is defined as follows:

(Def. 45) $\operatorname{Shift}(t, k) = \operatorname{Shift}(t, k, S).$

Let S be a non empty set and let f be a set. The functor $Not_0(f, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 46).

(Def. 46) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then \neg Castboolean(Fid(f, the infinite sequences of S))(t) = true if and only if (Fid(Not₀(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor Not S yielding a unary operation on ModelSP (the infinite sequences of S) is defined by:

(Def. 47) For every set f such that $f \in ModelSP$ (the infinite sequences of S) holds (Not S)(f) = Not₀(f, S).

Let S be a non empty set, let f be a function from the infinite sequences of S into Boolean, and let t be a set. The functor Next-univ(t, f) yields an element of Boolean and is defined as follows:

(Def. 48) Next-univ $(t, f) = \begin{cases} true, \text{ if } t \text{ is an element of the infinite sequences} \\ \text{of } S \text{ and } f(\text{Shift}(t, 1, S)) = true, \\ false, \text{ otherwise.} \end{cases}$

Let S be a non empty set and let f be a set. The functor $Next_0(f, S)$ yielding an element of ModelSP (the infinite sequences of S) is defined by the condition

(Def. 49).

(Def. 49) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then Next-univ $(t, \operatorname{Fid}(f, \operatorname{the infinite sequences of } S)) = true$ if and only if $(\operatorname{Fid}(\operatorname{Next}_0(f, S), \operatorname{the infinite sequences of } S))(t) = true.$

Let S be a non empty set. The functor Next S yields a unary operation on ModelSP (the infinite sequences of S) and is defined as follows:

(Def. 50) For every set f such that $f \in ModelSP$ (the infinite sequences of S) holds $(Next S)(f) = Next_0(f, S).$

Let S be a non empty set and let f, g be sets. The functor $\operatorname{And}_0(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 51).

(Def. 51) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then Castboolean(Fid(f, the infinite sequences of S))(t) \wedge Castboolean(Fid(g, the infinite sequences of S))(t) = true if and only if (Fid(And₀(f, g, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor And S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).

(Def. 52) Let f, g be sets. Suppose $f \in ModelSP$ (the infinite sequences of S) and $g \in ModelSP$ (the infinite sequences of S). Then $(And S)(f, g) = And_0(f, g, S)$.

Let S be a non empty set, let f, g be functions from the infinite sequences of S into Boolean, and let t be a set. The functor Until-univ(t, f, g, S) yields an element of Boolean and is defined as follows:

 $(\text{Def. 53}) \quad \text{Until-univ}(t, f, g, S) = \begin{cases} true, \text{ if } t \text{ is an element of the infinite sequences} \\ \text{of } S \text{ and there exists a natural number } m \\ \text{such that for every natural number } j \\ \text{such that } j < m \text{ holds } f(\text{Shift}(t, j, S)) = \\ true \text{ and } g(\text{Shift}(t, m, S)) = true, \\ false, \text{ otherwise.} \end{cases}$

Let S be a non empty set and let f, g be sets. The functor $\text{Until}_0(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 54).

(Def. 54) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then Until-univ $(t, \operatorname{Fid}(f, \operatorname{the infinite sequences of } S), \operatorname{Fid}(g, \operatorname{the infinite sequences of } S), S) = true if and only if (\operatorname{Fid}(\operatorname{Until}_0(f, g, S), \operatorname{the infinite sequences of } S))(t) = true.$

Let S be a non empty set. The functor Until S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).

(Def. 55) Let f, g be sets. Suppose $f \in ModelSP$ (the infinite sequences of S) and $g \in ModelSP$ (the infinite sequences of S). Then (Until S)(f, g) = $\operatorname{Until}_0(f, g, S).$

Let S be a non empty set. The functor \vee_S yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).

(Def. 56) Let f, g be sets. Suppose $f \in ModelSP$ (the infinite sequences of S) and $g \in ModelSP$ (the infinite sequences of S). Then $\forall_S(f, g) = (Not S)((And S)((Not S)(f), (Not S)(g))).$

The functor Release S yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 57).

(Def. 57) Let f, g be sets. Suppose $f \in ModelSP$ (the infinite sequences of S) and $g \in ModelSP$ (the infinite sequences of S). Then (Release S)(f, g) = (Not S)((Until S)((Not S)(f), (Not S)(g))).

Let S be a non empty set and let B_1 be a non empty subset of ModelSP (the infinite sequences of S). The functor $Model_{LTL}(S, B_1)$ yields an LTL-model structure and is defined as follows:

(Def. 58) Model_{LTL} $(S, B_1) = \langle \text{ModelSP} (\text{the infinite sequences of } S), B_1, \text{And } S, \\ \vee_S, \text{Not } S, \text{Next } S, \text{Until } S, \text{Release } S \rangle.$

In the sequel B_1 denotes a non empty subset of ModelSP (the infinite sequences of S), t denotes an element of the infinite sequences of S, and f, g denote assignations of Model_{LTL} (S, B_1) .

Let S be a non empty set, let B_1 be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of $Model_{LTL}(S, B_1)$. The predicate $t \models f$ is defined by: (Fid(f, the infinite sequences of S))(t) = true

(Def. 59) (Fid(f, the infinite sequences of S))(t) = true.

Let S be a non empty set, let B_1 be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of Model_{LTL}(S, B_1). We introduce $t \not\models f$ as an antonym of $t \models f$.

The following propositions are true:

- (56) $f \lor g = \neg(\neg f \land \neg g)$ and $f \mathcal{R} g = \neg(\neg f \mathcal{U} \neg g)$.
- (57) $t \models \neg f$ iff $t \not\models f$.
- (58) $t \models f \land g \text{ iff } t \models f \text{ and } t \models g.$
- (59) $t \models \mathcal{X} f$ iff $\text{Shift}(t, 1) \models f$.
- (60) $t \models f \mathcal{U} g$ if and only if there exists a natural number m such that for every natural number j such that j < m holds $\text{Shift}(t, j) \models f$ and $\text{Shift}(t, m) \models g$.
- (61) $t \models f \lor g$ iff $t \models f$ or $t \models g$.
- (62) $t \models f \mathcal{R} g$ if and only if for every natural number m such that for every natural number j such that j < m holds $\text{Shift}(t, j) \models \neg f$ holds $\text{Shift}(t, m) \models g$.

The non empty set AtomicFamily is defined as follows:

(Def. 60) AtomicFamily $= 2^{\text{atomic_{LTL}}}$.

Let a, t be sets. The functor AtomicFunc(a, t) yielding an element of *Boolean* is defined as follows:

(Def. 61) AtomicFunc
$$(a, t) = \begin{cases} true, \text{ if } t \in \text{the infinite sequences of AtomicFamily} \\ and a \in (\text{CastSeq}(t, \text{AtomicFamily}))(0), \\ false, \text{ otherwise.} \end{cases}$$

Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the infinite sequences of AtomicFamily) and is defined by:

(Def. 62) For every set t such that $t \in$ the infinite sequences of AtomicFamily holds (Fid(AtomicAsgn a, the infinite sequences of AtomicFamily))(t) = AtomicFunc(a, t).

The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences of AtomicFamily) is defined by:

(Def. 63) AtomicBasicAsgn = { $x \in ModelSP$ (the infinite sequences of AtomicFamily): $\bigvee_{a:set} x = AtomicAsgn a$ }.

The function AtomicKai from $atomic_{LTL}$ into the basic assignations of $Model_{LTL}(AtomicFamily, AtomicBasicAsgn)$ is defined as follows:

(Def. 64) For every set a such that $a \in \text{atomic}_{\text{LTL}}$ holds $(\text{AtomicKai})(a) = \text{Atomic}_{\text{Asgn} a}$.

Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. The predicate $r \models H$ is defined by:

(Def. 65) $r \models \text{Evaluate}(H, \text{AtomicKai}).$

Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. We introduce $r \not\models H$ as an antonym of $r \models H$.

Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of WFF_{LTL}. The predicate $r \models W$ is defined by:

(Def. 66) For every LTL-formula H such that $H \in W$ holds $r \models H$.

Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of WFF_{LTL}. We introduce $r \not\models W$ as an antonym of $r \models W$.

Let W be a subset of WFF_{LTL}. The functor $\mathcal{X}W$ yielding a subset of WFF_{LTL} is defined as follows:

(Def. 67) $\mathcal{X}W = \{x; x \text{ ranges over LTL-formulae: } \bigvee_{u: \text{LTL-formula}} (u \in W \land x = \mathcal{X}u)\}.$

In the sequel r denotes an element of the infinite sequences of AtomicFamily. We now state a number of propositions:

- (63) If H is atomic, then $r \models H$ iff $H \in (\text{CastSeq}(r, \text{AtomicFamily}))(0)$.
- (64) $r \models \neg H$ iff $r \not\models H$.
- (65) $r \models H_1 \land H_2$ iff $r \models H_1$ and $r \models H_2$.

- (66) $r \models H_1 \lor H_2$ iff $r \models H_1$ or $r \models H_2$.
- (67) $r \models \mathcal{X} H$ iff $\text{Shift}(r, 1) \models H$.
- (68) $r \models H_1 \ \mathcal{U} \ H_2$ if and only if there exists a natural number m such that for every natural number j such that j < m holds $\operatorname{Shift}(r, j) \models H_1$ and $\operatorname{Shift}(r, m) \models H_2$.
- (69) $r \models H_1 \mathcal{R} H_2$ if and only if for every natural number m such that for every natural number j such that j < m holds $\operatorname{Shift}(r, j) \models \neg H_1$ holds $\operatorname{Shift}(r, m) \models H_2$.
- (70) $r \models \neg (H_1 \lor H_2)$ iff $r \models \neg H_1 \land \neg H_2$.
- (71) $r \models \neg (H_1 \land H_2)$ iff $r \models \neg H_1 \lor \neg H_2$.
- (72) $r \models H_1 \mathcal{R} H_2 \text{ iff } r \models \neg(\neg H_1 \mathcal{U} \neg H_2).$
- (73) $r \not\models \neg H$ iff $r \models H$.
- (74) $r \models \mathcal{X} \neg H$ iff $r \models \neg \mathcal{X} H$.
- (75) $r \models H_1 \mathcal{U} H_2$ iff $r \models H_2 \lor H_1 \land \mathcal{X}(H_1 \mathcal{U} H_2)$.
- (76) $r \models H_1 \mathcal{R} H_2$ iff $r \models H_1 \land H_2 \lor H_2 \land \mathcal{X}(H_1 \mathcal{R} H_2).$

In the sequel W is a subset of WFF_{LTL}.

One can prove the following propositions:

- (77) $r \models \mathcal{X} W$ iff $\text{Shift}(r, 1) \models W$.
- (78)(i) If H is atomic, then H is not negative and H is not conjunctive and H is not disjunctive and H does not have *next* operator and H does not have *until* operator and H does not have *release* operator,
 - (ii) if H is negative, then H is not atomic and H is not conjunctive and H is not disjunctive and H does not have *next* operator and H does not have *until* operator and H does not have *release* operator,
- (iii) if H is conjunctive, then H is not atomic and H is not negative and H is not disjunctive and H does not have *next* operator and H does not have *until* operator and H does not have *release* operator,
- (iv) if H is disjunctive, then H is not atomic and H is not negative and H is not conjunctive and H does not have *next* operator and H does not have *until* operator and H does not have *release* operator,
- (v) if H has *next* operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have *until* operator and H does not have *release* operator,
- (vi) if H has *until* operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have *next* operator and H does not have *release* operator, and
- (vii) if H has release operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator.
- (79) For every element t of the infinite sequences of S holds Shift(t, 0) = t.

- (80) For every element s_1 of the infinite sequences of S holds $\operatorname{Shift}(\operatorname{Shift}(s_1, k), n) = \operatorname{Shift}(s_1, n+k).$
- (81) For every sequence s_1 of S holds CastSeq(CastSeq s_1, S) = s_1 .
- (82) For every element s_1 of the infinite sequences of S holds $CastSeq CastSeq(s_1, S) = s_1.$
- (83) If $H, \neg H \in W$, then $r \not\models W$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, [2]1(1):131-145, 1990.
- [3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191–199,
- 1990. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990. [5]
- [6]Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, [7]1990. Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53,
- [8] 1990.
- [9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
- [10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.
- [11]Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990. [12]Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received April 21, 2008