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Summary. In this article we show the correctness of integer arithmetic ba-
sed on Chinese Remainder theorem as described e.g. in [11]: Integers are transfor-
med to finite sequences of modular integers, on which the arithmetic operations
are performed. Retransformation of the results to the integers is then accompli-
shed by means of the Chinese Remainder theorem. The method presented is a
typical example for computing in homomorphic images.
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The terminology and notation used here are introduced in the following articles:
[10], [9], [8], [2], [7], [5], [4], [3], [6], and [1].

1. Preliminaries

Let f be a finite sequence. Note that f�0 is empty.
Let f be a complex-valued finite sequence and let n be a natural number.

Observe that f�n is complex-valued.
Let f be an integer-valued finite sequence and let n be a natural number.

Note that f�n is integer-valued.
Let f be an integer-valued finite sequence and let n be a natural number.

Observe that f�n is integer-valued.
Let i be an integer. Observe that 〈i〉 is integer-valued.
Let f , g be integer-valued finite sequences. Note that f a g is integer-valued.
One can prove the following propositions:

1This work has been partially supported by grant BW 5100-5-0293-7.
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(1) For all complex-valued finite sequences f1, f2 holds len(f1 + f2) =
min(len f1, len f2).

(2) For all complex-valued finite sequences f1, f2 holds len(f1 − f2) =
min(len f1, len f2).

(3) For all complex-valued finite sequences f1, f2 holds len(f1 f2) =
min(len f1, len f2).

(4) Let m1, m2 be complex-valued finite sequences. Suppose lenm1 =
lenm2. Let k be a natural number. If k ≤ lenm1, then (m1m2)�k =
(m1�k) (m2�k).

Let F be an integer-valued finite sequence. Note that
∑
F is integer and∏

F is integer.
Next we state several propositions:

(5) Let f be a complex-valued finite sequence and i be a natural number. If
i+ 1 ≤ len f, then (f�i) a 〈f(i+ 1)〉 = f�(i+ 1).

(6) For every complex-valued finite sequence f such that there exists a na-
tural number i such that i ∈ dom f and f(i) = 0 holds

∏
f = 0.

(7) For all integers n, a, b holds (a − b) mod n = ((a mod n) − (b mod
n)) mod n.

(8) For all integers i, j, k such that i | j holds k · i | k · j.
(9) Let m be an integer-valued finite sequence and i be a natural number.

If i ∈ domm and mi 6= 0, then
∏
m

mi
is an integer.

(10) Let m be an integer-valued finite sequence and i be a natural number.
If i ∈ domm, then there exists an integer z such that z ·mi =

∏
m.

(11) Let m be an integer-valued finite sequence and i, j be natural numbers.

If i, j ∈ domm and j 6= i and mj 6= 0, then
∏
m

mi·mj is an integer.

(12) Let m be an integer-valued finite sequence and i, j be natural numbers.
Suppose i, j ∈ domm and j 6= i and mj 6= 0. Then there exists an integer
z such that z ·mi =

∏
m

mj
.

2. More on Greatest Common Divisors

Next we state a number of propositions:

(13) For every integer i holds |i| | i and i | |i|.
(14) For all integers i, j holds i gcd j = i gcd|j|.
(15) For all integers i, j such that i and j are relative prime holds lcm(i, j) =
|i · j|.

(16) For all integers i, j, k holds i · j gcd i · k = |i| · (j gcd k).
(17) For all integers i, j holds i · j gcd i = |i|.
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(18) For all integers i, j, k holds i gcd j gcd k = i gcd j gcd k.

(19) For all integers i, j, k such that i and j are relative prime holds i gcd j·k =
i gcd k.

(20) For all integers i, j such that i and j are relative prime holds i · j |
lcm(i, j).

(21) For all integers x, y, i, j such that i and j are relative prime holds if
x ≡ y (mod i) and x ≡ y (mod j), then x ≡ y (mod i · j).

(22) For all integers i, j such that i and j are relative prime there exists an
integer s such that s · i ≡ 1 (mod j).

3. Chinese Remainder Sequences

Let f be an integer-valued finite sequence. We introduce f is multiplicative-
trivial as an antonym of f is non-empty.
Let f be an integer-valued finite sequence. Let us observe that f is multiplica-

tive-trivial if and only if:

(Def. 1) There exists a natural number i such that i ∈ dom f and fi = 0.
One can verify the following observations:

∗ there exists an integer-valued finite sequence which is multiplicative-
trivial,

∗ there exists an integer-valued finite sequence which is non multiplicative-
trivial, and

∗ there exists an integer-valued finite sequence which is non empty and
positive yielding.

The following proposition is true

(23) For every multiplicative-trivial integer-valued finite sequence m holds∏
m = 0.

Let f be an integer-valued finite sequence. We say that f is Chinese rema-
inder if and only if:

(Def. 2) For all natural numbers i, j such that i, j ∈ dom f and i 6= j holds fi
and fj are relative prime.

One can verify that there exists an integer-valued finite sequence which is
non empty, positive yielding, and Chinese remainder.
A CR-sequence is a non empty positive yielding Chinese remainder integer-

valued finite sequence.
Let us note that every CR-sequence is non multiplicative-trivial.
One can verify that every integer-valued finite sequence which is

multiplicative-trivial is also non empty.
We now state the proposition



250 christoph schwarzweller

(24) For every CR-sequence f and for every natural number m such that
0 < m ≤ len f holds f�m is a CR-sequence.
Let m be a CR-sequence. Observe that

∏
m is positive and natural.

Next we state the proposition

(25) Let m be a CR-sequence and i be a natural number. If i ∈ domm, then
for every integer m3 such that m3 =

∏
m

mi
holds

4. Integer Arithmetic based on CRT

let u be an integer and letm be an integer-valued finite sequence. The functor
mod(u,m) yields a finite sequence and is defined as follows:

(Def. 3) lenmod(u,m) = lenm and for every natural number i such that i ∈
dommod(u,m) holds (mod(u,m))i = u mod mi.

Let u be an integer and let m be an integer-valued finite sequence. Observe
that mod(u,m) is integer-valued.
Letm be a CR-sequence. A finite sequence is called a CR-coefficient sequence

for m if it satisfies the conditions (Def. 4).

(Def. 4)(i) len it = lenm, and
(ii) for every natural number i such that i ∈ dom it there exists an integer s
and there exists an integerm3 such thatm3 =

∏
m

mi
and s·m3 ≡ 1 (modmi)

and iti = s ·
∏
m

mi
.

Let m be a CR-sequence. Note that every CR-coefficient sequence for m is
integer-valued.
Next we state several propositions:

(26) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i be
a natural number. If i ∈ dom c, then ci ≡ 1 (modmi).

(27) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i, j
be natural numbers. If i, j ∈ dom c and i 6= j, then ci ≡ 0 (modmj).

(28) Let m be a CR-sequence, c1, c2 be CR-coefficient sequences for m, and
i be a natural number. If i ∈ dom c1, then (c1)i ≡ (c2)i (modmi).

(29) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenm = lenu. Let c be a CR-coefficient sequence for m and i be
a natural number. If i ∈ domm, then

∑
u c ≡ ui (modmi).

(30) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenm = lenu. Let c1, c2 be CR-coefficient sequences for m. Then∑
u c1 ≡

∑
u c2 (mod

∏
m).

Let u be an integer-valued finite sequence and let m be a CR-sequence. Let
us assume that lenm = lenu. The functor Z(u,m) yields an integer and is
defined as follows:
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(Def. 5) For every CR-coefficient sequence c for m holds Z(u,m) = (
∑
u c) mod∏

m.

We now state a number of propositions:

(31) For every integer-valued finite sequence u and for every CR-sequence m
such that lenm = lenu holds 0 ≤ Z(u,m) <

∏
m.

(32) For every integer u and for every CR-sequence m and for every natural
number i such that i ∈ domm holds u ≡ (mod(u,m))i (modmi).

(33) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then (mod(u,m) + mod(v,m))i ≡ u+ v (modmi).

(34) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then (mod(u,m) mod(v,m))i ≡ u · v (modmi).

(35) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m) + mod(v,m),m) ≡ u+ v (modmi).

(36) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m)−mod(v,m),m) ≡ u− v (modmi).

(37) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m) mod(v,m),m) ≡ u · v (modmi).

(38) For all integers u, v and for every CR-sequence m such that 0 ≤ u+ v <∏
m holds Z(mod(u,m) + mod(v,m),m) = u+ v.

(39) For all integers u, v and for every CR-sequence m such that 0 ≤ u− v <∏
m holds Z(mod(u,m)−mod(v,m),m) = u− v.

(40) For all integers u, v and for every CR-sequence m such that 0 ≤ u · v <∏
m holds Z(mod(u,m) mod(v,m),m) = u · v.

5. Chinese Remainder Theorem Revisited

We now state two propositions:

(41) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenu = lenm. Then there exists an integer z such that 0 ≤
z <

∏
m and for every natural number i such that i ∈ domu holds

z ≡ ui (modmi).
(42) Let u be an integer-valued finite sequence, m be a CR-sequence, and z1,
z2 be integers. Suppose that
(i) 0 ≤ z1,
(ii) z1 <

∏
m,

(iii) for every natural number i such that i ∈ domm holds z1 ≡ ui (modmi),
(iv) 0 ≤ z2,
(v) z2 <

∏
m, and

(vi) for every natural number i such that i ∈ domm holds z2 ≡ ui (modmi).
Then z1 = z2.
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