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Summary. The goal of this article is to formalize two versions of Ramsey’s
theorem. The theorems are not phrased in the usually pictorial representation of
a coloured graph but use a set-theoretic terminology. After some useful lemma,
the second section presents a generalization of Ramsey’s theorem on infinite set
closely following the book [9]. The last section includes the formalization of the
theorem in a more known version (see [1]).
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The notation and terminology used here are introduced in the following papers:
[15], [16], [17], [4], [3], [6], [12], [7], [2], [5], [8], [14], [13], [10], and [11].

1. Preliminaries

For simplicity, we adopt the following convention: n, m, k are natural num-
bers, X, Y , Z are sets, f is a function from X into Y , and H is a subset of
X.
Let us consider X, Y , H and let P be a partition of [X]Y . We say that H is

homogeneous for P if and only if:

(Def. 1) There exists an element p of P such that [H]Y ⊆ p.
Let us consider n and let X be an infinite set. One can check that [X]n is

non empty.
Let us consider n, X, Y , f . Let us assume that f is one-to-one and n ⊆ X

and X is non empty and Y is non empty. The functor f ||n yields a function
from [X]n into [Y ]n and is defined by:

(Def. 2) For every element x of [X]n holds (f ||n)(x) = f◦x.
Next we state four propositions:
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(1) If f is one-to-one and n ⊆ X and X is non empty and Y is non empty,
then [f◦H]n = (f ||n)◦([H]n).

(2) If X is infinite and X ⊆ ω, then X = ω.
(3) If X is infinite, then X ∪ Y is infinite.
(4) If X is infinite and Y is finite, then X \ Y is infinite.
Let X be an infinite set and let Y be a set. Note that X ∪ Y is infinite.
Let X be an infinite set and let Y be a finite set. One can verify that X \ Y

is infinite.
The following propositions are true:

(5) [X]0 = {0}.
(6) For every finite set X such that cardX < n holds [X]n is empty.

(7) If X ⊆ Y, then [X]Z ⊆ [Y ]Z .
(8) If X is finite and Y is finite and Y = X, then [Y ]X = {Y }.
(9) If X is non empty and Y is non empty, then f is constant iff there exists
an element y of Y such that rng f = {y}.

(10) For every finite set X such that k ≤ cardX there exists a subset Y of
X such that cardY = k.

(11) If m ≥ 1, then n+ 1 ≤
(n+m
m

)
.

(12) If m ≥ 1 and n ≥ 1, then m+ 1 ≤
(n+m
m

)
.

(13) Let X be a non empty set, p1, p2 be elements of X, P be a partition of
X, and A be an element of P . Suppose p1 ∈ A and (the projection onto
P )(p1) = (the projection onto P )(p2). Then p2 ∈ A.

2. Infinite Ramsey Theorem

We now state two propositions:

(14) Let F be a function from [X]n into k. Suppose k 6= 0 and X is infinite.
Then there exists H such that H is infinite and F �[H]n is constant.

(15) Let X be an infinite set and P be a partition of [X]n. If P = k, then
there exists a subset of X which is infinite and homogeneous for P .

3. Ramsey’s Theorem

The scheme BinInd2 concerns a binary predicate P, and states that:
P[m,n]

provided the following conditions are satisfied:
• P[0, n] and P[n, 0], and
• If P[m+ 1, n] and P[m,n+ 1], then P[m+ 1, n+ 1].
We now state two propositions:
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(16) Suppose m ≥ 2 and n ≥ 2. Then there exists a natural number r such
that
(i) r ≤

((m+n)−′2
m−′1

)
,

(ii) r ≥ 2, and
(iii) for every finite set X and for every function F from [X]2 into Seg 2
such that cardX ≥ r there exists a subset S of X such that cardS ≥ m
and rng(F �[S]2) = {1} or cardS ≥ n and rng(F �[S]2) = {2}.

(17) Let m be a natural number. Then there exists a natural number r such
that for every finite set X and for every partition P of [X]2 if cardX ≥ r
and P = 2, then there exists a subset S of X such that cardS ≥ m and
S is homogeneous for P .
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