The Lebesgue Monotone Convergence Theorem

Noboru Endou Gifu National College of Technology Japan

Keiko Narita Hirosaki-city Aomori, Japan

Yasunari Shidama Shinshu University Nagano, Japan

Summary. In this article we prove the Monotone Convergence Theorem [16].

 $\rm MML$ identifier: MESFUNC9, version: 7.8.10 4.100.1011

The notation and terminology used in this paper have been introduced in the following articles: [10], [20], [2], [7], [21], [6], [8], [9], [1], [17], [18], [3], [4], [5], [13], [14], [15], [19], [11], [12], and [22].

1. Preliminaries

For simplicity, we adopt the following rules: X is a non empty set, S is a σ -field of subsets of X, M is a σ -measure on S, E is an element of S, F, G are sequences of partial functions from X into $\overline{\mathbb{R}}$, I is a sequence of extended reals, f, g are partial functions from X to $\overline{\mathbb{R}}$, s_1, s_2, s_3 are sequences of extended reals, p is an extended real number, n, m are natural numbers, x is an element of X, and z, D are sets.

Next we state a number of propositions:

- (1) If f is without $+\infty$ and g is without $+\infty$, then $\operatorname{dom}(f+g) = \operatorname{dom} f \cap \operatorname{dom} g$.
- (2) If f is without $+\infty$ and g is without $-\infty$, then dom $(f g) = \text{dom } f \cap \text{dom } g$.

C 2008 University of Białystok ISSN 1426-2630(p), 1898-9934(e)

NOBORU ENDOU et al.

- (3) If f is without $-\infty$ and g is without $-\infty$, then f + g is without $-\infty$.
- (4) If f is without $+\infty$ and g is without $+\infty$, then f + g is without $+\infty$.
- (5) If f is without $-\infty$ and g is without $+\infty$, then f g is without $-\infty$.
- (6) If f is without $+\infty$ and g is without $-\infty$, then f g is without $+\infty$.
- (7)(i) If s_1 is convergent to finite number, then there exists a real number g such that $\lim s_1 = g$ and for every real number p such that 0 < p there exists a natural number n such that for every natural number m such that $n \le m$ holds $|s_1(m) \lim s_1| < p$,
- (ii) if s_1 is convergent to $+\infty$, then $\lim s_1 = +\infty$, and
- (iii) if s_1 is convergent to $-\infty$, then $\lim s_1 = -\infty$.
- (8) If s_1 is non-negative, then s_1 is not convergent to $-\infty$.
- (9) If s_1 is convergent and for every natural number k holds $s_1(k) \le p$, then $\lim s_1 \le p$.
- (10) If s_1 is convergent and for every natural number k holds $p \leq s_1(k)$, then $p \leq \lim s_1$.
- (11) Suppose that
 - (i) s_2 is convergent,
- (ii) s_3 is convergent,
- (iii) s_2 is non-negative,
- (iv) s_3 is non-negative, and
- (v) for every natural number k holds $s_1(k) = s_2(k) + s_3(k)$.

Then s_1 is non-negative and convergent and $\lim s_1 = \lim s_2 + \lim s_3$.

- (12) Suppose for every natural number n holds $G(n) = F(n) \upharpoonright D$ and $x \in D$. Then
 - (i) if F # x is convergent to $+\infty$, then G # x is convergent to $+\infty$,
- (ii) if F # x is convergent to $-\infty$, then G # x is convergent to $-\infty$,
- (iii) if F # x is convergent to finite number, then G # x is convergent to finite number, and
- (iv) if F # x is convergent, then G # x is convergent.
- (13) If E = dom f and f is measurable on E and f is non-negative and $M(E \cap \text{EQ-dom}(f, +\infty)) \neq 0$, then $\int f \, dM = +\infty$.
- (14) $\int \chi_{E,X} dM = M(E)$ and $\int \chi_{E,X} \upharpoonright E dM = M(E)$.
- (15) Suppose that
- (i) $E \subseteq \operatorname{dom} f$,
- (ii) $E \subseteq \operatorname{dom} g$,
- (iii) f is measurable on E,
- (iv) g is measurable on E,
- (v) f is non-negative, and
- (vi) for every element x of X such that $x \in E$ holds $f(x) \leq g(x)$. Then $\int f \upharpoonright E \, \mathrm{d}M \leq \int g \upharpoonright E \, \mathrm{d}M$.

168

2. Selected Properties of Extended Real Sequence

Let f be an extended real-valued function and let x be a set. Then f(x) is an element of $\overline{\mathbb{R}}$.

Let s be an extended real-valued function. The functor $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ yields a sequence of extended reals and is defined by:

(Def. 1)
$$(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(0) = s(0)$$
 and for every natural number *n* holds $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa\in\mathbb{N}}(n) + s(n+1).$

Let s be an extended real-valued function. We say that s is summable if and only if:

(Def. 2) $(\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}$ is convergent.

Let s be an extended real-valued function. The functor $\sum s$ yielding an extended real number is defined as follows:

(Def. 3) $\sum s = \lim((\sum_{\alpha=0}^{\kappa} s(\alpha))_{\kappa \in \mathbb{N}}).$

Next we state several propositions:

- (16) If s_1 is non-negative, then $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ is non-negative and $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa\in\mathbb{N}}$ is non-decreasing.
- (17) If for every natural number n holds $0 < s_1(n)$, then for every natural number m holds $0 < (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m)$.
- (18) If F has the same dom and for every natural number n holds $G(n) = F(n) \upharpoonright D$, then G has the same dom.
- (19) Suppose that
 - (i) $D \subseteq \operatorname{dom} F(0)$,
 - (ii) for every natural number n holds $G(n) = F(n) \upharpoonright D$, and
- (iii) for every element x of X such that $x \in D$ holds F # x is convergent. Then $\lim F \upharpoonright D = \lim G$.
- (20) Suppose F has the same dom and $E \subseteq \text{dom } F(0)$ and for every natural number m holds F(m) is measurable on E and $G(m) = F(m) \upharpoonright E$. Then G(n) is measurable on E.
- (21) Suppose that
 - (i) $E \subseteq \operatorname{dom} F(0),$
 - (ii) G has the same dom,
- (iii) for every element x of X such that $x \in E$ holds F # x is summable, and
- (iv) for every natural number n holds $G(n) = F(n) \upharpoonright E$.

Let x be an element of X. If $x \in E$, then G # x is summable.

3. Partial Sums of Functional Sequence and their Properties

Let X be a non empty set and let F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. The functor $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}$ yields a sequence of partial functions from X into $\overline{\mathbb{R}}$ and is defined as follows:

(Def. 4) $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(0) = F(0)$ and for every natural number n holds $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n+1) = (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n) + F(n+1).$

Let X be a set and let F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. We say that F is additive if and only if:

- (Def. 5) For all natural numbers n, m such that $n \neq m$ and for every set x such that $x \in \text{dom } F(n) \cap \text{dom } F(m)$ holds $F(n)(x) \neq +\infty$ or $F(m)(x) \neq -\infty$. Next we state a number of propositions:
 - (22) If $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ and $m \leq n$, then $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(m)$ and $z \in \operatorname{dom} F(m)$.
 - (23) If $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(z) = +\infty$, then there exists a natural number m such that $m \leq n$ and $F(m)(z) = +\infty$.
 - (24) If F is additive and $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(z) = +\infty$ and $m \le n$, then $F(m)(z) \ne -\infty$.
 - (25) If $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(z) = -\infty$, then there exists a natural number m such that $m \leq n$ and $F(m)(z) = -\infty$.
 - (26) If F is additive and $z \in \operatorname{dom}(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(z) = -\infty$ and $m \leq n$, then $F(m)(z) \neq +\infty$.
 - (27) If F is additive, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n)^{-1}(\{-\infty\}) \cap F(n+1)^{-1}(\{+\infty\}) = \emptyset$ and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n)^{-1}(\{+\infty\}) \cap F(n+1)^{-1}(\{-\infty\}) = \emptyset$.
 - (28) If F is additive, then dom $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n) = \bigcap \{ \operatorname{dom} F(k); k \text{ ranges} over elements of } \mathbb{N}: k \leq n \}.$
 - (29) If F is additive and has the same dom, then dom $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n) =$ dom F(0).
 - (30) If for every natural number n holds F(n) is non-negative, then F is additive.
 - (31) If F is additive and for every n holds $G(n) = F(n) \upharpoonright D$, then G is additive.
 - (32) If F is additive and has the same dom and $D \subseteq \text{dom } F(0)$ and $x \in D$, then $(\sum_{\alpha=0}^{\kappa} (F \# x)(\alpha))_{\kappa \in \mathbb{N}}(n) = ((\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x)(n).$
 - (33) Suppose F is additive and has the same dom and $D \subseteq \text{dom} F(0)$ and $x \in D$. Then
 - (i) $(\sum_{\alpha=0}^{\kappa} (F \# x)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent to finite number iff $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x$ is convergent to finite number,
 - (ii) $(\sum_{\alpha=0}^{\kappa} (F \# x)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent to $+\infty$ iff $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x$ is convergent to $+\infty$,

- (iii) $(\sum_{\alpha=0}^{\kappa} (F \# x)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent to $-\infty$ iff $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x$ is convergent to $-\infty$, and
- (iv) $(\sum_{\alpha=0}^{\kappa} (F \# x)(\alpha))_{\kappa \in \mathbb{N}}$ is convergent iff $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x$ is convergent.
- (34) If F is additive and has the same dom and dom $f \subseteq \text{dom } F(0)$ and $x \in \text{dom } f$ and F # x is summable and $f(x) = \sum F \# x$, then $f(x) = \lim((\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}} \# x)$.
- (35) Suppose that for every natural number m holds F(m) is simple function in S. Then F is additive and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ is simple function in S.
- (36) If for every natural number m holds F(m) is non-negative, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ is non-negative.
- (37) If F has the same dom and $x \in \text{dom } F(0)$ and for every natural number k holds F(k) is non-negative and $n \leq m$, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(x) \leq (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(m)(x)$.
- (38) Suppose F has the same dom and $x \in \text{dom } F(0)$ and for every natural number m holds F(m) is non-negative. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}} \# x$ is non-decreasing and $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}} \# x$ is convergent.
- (39) If for every natural number m holds F(m) is without $-\infty$, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ is without $-\infty$.
- (40) If for every natural number m holds F(m) is without $+\infty$, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)$ is without $+\infty$.
- (41) Suppose that for every natural number n holds F(n) is measurable on E and F(n) is without $-\infty$. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(m)$ is measurable on E.
- (42) Suppose that
 - (i) F is additive and has the same dom,
- (ii) G is additive and has the same dom,
- (iii) $x \in \operatorname{dom} F(0) \cap \operatorname{dom} G(0)$, and
- (iv) for every natural number k and for every element y of X such that $y \in \operatorname{dom} F(0) \cap \operatorname{dom} G(0)$ holds $F(k)(y) \leq G(k)(y)$. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n)(x) \leq (\sum_{\alpha=0}^{\kappa} G(\alpha))_{\kappa \in \mathbb{N}}(n)(x)$.
- (43) Let X be a non empty set and F be a sequence of partial functions from X into $\overline{\mathbb{R}}$. If F is additive and has the same dom, then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}$
- has the same dom.(44) Suppose that
- (i) $\operatorname{dom} F(0) = E$,
- (ii) F is additive and has the same dom,
- (iii) for every natural number n holds $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa\in\mathbb{N}}(n)$ is measurable on E, and
- (iv) for every element x of X such that $x \in E$ holds F # x is summable.

Then $\lim_{\alpha \to 0} F(\alpha)_{\kappa \in \mathbb{N}}$ is measurable on E.

- (45) Suppose that for every natural number n holds F(n) is integrable on M. Let m be a natural number. Then $(\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(m)$ is integrable on M.
- (46) Suppose that
 - (i) $E = \operatorname{dom} F(0),$
 - (ii) F is additive and has the same dom, and
- (iii) for every natural number n holds F(n) is measurable on E and F(n) is non-negative and $I(n) = \int F(n) \, dM$.

Then
$$\int (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(m) dM = (\sum_{\alpha=0}^{\kappa} I(\alpha))_{\kappa \in \mathbb{N}}(m).$$

4. Sequence of Measurable Functions

Next we state two propositions:

- (47) Suppose that
- (i) $E \subseteq \operatorname{dom} f$,
- (ii) f is non-negative,
- (iii) f is measurable on E,
- (iv) F is additive,
- (v) for every n holds F(n) is simple function in S and F(n) is non-negative and $E \subseteq \text{dom } F(n)$, and
- (vi) for every x such that $x \in E$ holds F # x is summable and $f(x) = \sum F \# x$.

Then there exists a sequence I of extended reals such that for every n holds $I(n) = \int F(n) \upharpoonright E \, \mathrm{d}M$ and I is summable and $\int f \upharpoonright E \, \mathrm{d}M = \sum I$.

- (48) Suppose $E \subseteq \text{dom } f$ and f is non-negative and f is measurable on E. Then there exists a sequence g of partial functions from X into $\overline{\mathbb{R}}$ such that
 - (i) g is additive,
 - (ii) for every natural number n holds g(n) is simple function in S and g(n) is non-negative and g(n) is measurable on E,
- (iii) for every element x of X such that $x \in E$ holds g # x is summable and $f(x) = \sum g \# x$, and
- (iv) there exists a sequence I of extended reals such that for every natural number n holds $I(n) = \int g(n) \restriction E \, dM$ and I is summable and $\int f \restriction E \, dM = \sum I$.

Let X be a non empty set. Observe that there exists a sequence of partial functions from X into $\overline{\mathbb{R}}$ which is additive and has the same dom.

Let C, D, X be non empty sets, let F be a function from $C \times D$ into $X \rightarrow \overline{\mathbb{R}}$, let c be an element of C, and let d be an element of D. Then F(c, d) is a partial function from X to $\overline{\mathbb{R}}$. Let C, D, X be non empty sets, let F be a function from $C \times D$ into X, and let c be an element of C. The functor $\operatorname{curry}(F, c)$ yields a function from D into X and is defined as follows:

(Def. 6) For every element d of D holds $(\operatorname{curry}(F, c))(d) = F(c, d)$.

Let C, D, X be non empty sets, let F be a function from $C \times D$ into X, and let d be an element of D. The functor curry'(F, d) yields a function from C into X and is defined as follows:

(Def. 7) For every element c of C holds $(\operatorname{curry}'(F, d))(c) = F(c, d)$.

Let X, Y be sets, let F be a function from $\mathbb{N} \times \mathbb{N}$ into $X \rightarrow Y$, and let n be a natural number. The functor curry(F, n) yielding a sequence of partial functions from X into Y is defined by:

(Def. 8) For every natural number m holds $(\operatorname{curry}(F, n))(m) = F(n, m)$.

The functor curry (F, n) yields a sequence of partial functions from X into Y and is defined by:

(Def. 9) For every natural number m holds $(\operatorname{curry}'(F, n))(m) = F(m, n)$.

Let X be a non empty set, let F be a function from \mathbb{N} into $(X \rightarrow \overline{\mathbb{R}})^{\mathbb{N}}$, and let n be a natural number. Then F(n) is a sequence of partial functions from X into $\overline{\mathbb{R}}$.

The following four propositions are true:

- (49) Suppose E = dom F(0) and F has the same dom and for every natural number n holds F(n) is non-negative and F(n) is measurable on E. Then there exists a function F_1 from \mathbb{N} into $(X \rightarrow \mathbb{R})^{\mathbb{N}}$ such that for every natural number n holds
 - (i) for every natural number m holds $F_1(n)(m)$ is simple function in S and dom $F_1(n)(m) = \text{dom } F(n)$,
 - (ii) for every natural number m holds $F_1(n)(m)$ is non-negative,
- (iii) for all natural numbers j, k such that $j \le k$ and for every element x of X such that $x \in \text{dom } F(n)$ holds $F_1(n)(j)(x) \le F_1(n)(k)(x)$, and
- (iv) for every element x of X such that $x \in \text{dom } F(n)$ holds $F_1(n) \# x$ is convergent and $\lim_{x \to \infty} (F_1(n) \# x) = F(n)(x)$.
- (50) Suppose that
 - (i) $E = \operatorname{dom} F(0),$
 - (ii) F is additive and has the same dom, and
- (iii) for every natural number n holds F(n) is measurable on E and F(n) is non-negative.

Then there exists a sequence I of extended reals such that for every natural number n holds

 $I(n) = \int F(n) \, \mathrm{d}M$ and $\int (\sum_{\alpha=0}^{\kappa} F(\alpha))_{\kappa \in \mathbb{N}}(n) \, \mathrm{d}M = (\sum_{\alpha=0}^{\kappa} I(\alpha))_{\kappa \in \mathbb{N}}(n).$

- (51) Suppose that
 - (i) $E \subseteq \operatorname{dom} F(0),$

NOBORU ENDOU *et al.*

- (ii) F is additive and has the same dom,
- (iii) for every natural number n holds F(n) is non-negative and F(n) is measurable on E, and
- (iv) for every element x of X such that $x \in E$ holds F # x is summable. Then there exists a sequence I of extended reals such that for every natural number n holds $I(n) = \int F(n) \upharpoonright E \, dM$ and I is summable and

 $\int \lim \left(\left(\sum_{\alpha=0}^{\kappa} F(\alpha) \right)_{\kappa \in \mathbb{N}} \right) | E \, \mathrm{d}M = \sum I.$

- (52) Suppose that
 - (i) $E = \operatorname{dom} F(0),$
 - (ii) F(0) is non-negative,
- (iii) F has the same dom,
- (iv) for every natural number n holds F(n) is measurable on E,
- (v) for all natural numbers n, m such that $n \le m$ and for every element x of X such that $x \in E$ holds $F(n)(x) \le F(m)(x)$, and
- (vi) for every element x of X such that $x \in E$ holds F # x is convergent. Then there exists a sequence I of extended reals such that for every natural number n holds $I(n) = \int F(n) dM$ and I is convergent and $\int \lim F dM = \lim I$.

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
- [4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173–183, 1991.
- [5] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [11] Nukawa Fadar and Varmani Chidawa. Interval of mathematika function. Formalized Mathematica Science Scie
- [11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53–70, 2006.
- [12] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57–63, 2008.
- [13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491–494, 2001.
- [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. *Formalized Mathematics*, 9(3):495–500, 2001.
- [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. *Formalized Mathematics*, 9(3):525–529, 2001.
- [16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
- [17] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.

174

- [19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathe-matics, 3(1):17–21, 1992.
- [20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
 [21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
- 1990. [22] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. *Formalized Mathematics*, 15(4):231–236, 2007.

Received March 18, 2008