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The notation and terminology used in this paper have been introduced in the
following articles: [10], [20], [2], [7], [21], [6], [8], [9], [1], [17], [18], [3], [4], [5],
[13], [14], [15], [19], [11], [12], and [22].

1. Preliminaries

For simplicity, we adopt the following rules: X is a non empty set, S is a
σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F , G are
sequences of partial functions from X into R, I is a sequence of extended reals,
f , g are partial functions from X to R, s1, s2, s3 are sequences of extended reals,
p is an extended real number, n, m are natural numbers, x is an element of X,
and z, D are sets.
Next we state a number of propositions:

(1) If f is without +∞ and g is without +∞, then dom(f + g) = dom f ∩
dom g.

(2) If f is without +∞ and g is without −∞, then dom(f − g) = dom f ∩
dom g.
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(3) If f is without −∞ and g is without −∞, then f + g is without −∞.
(4) If f is without +∞ and g is without +∞, then f + g is without +∞.
(5) If f is without −∞ and g is without +∞, then f − g is without −∞.
(6) If f is without +∞ and g is without −∞, then f − g is without +∞.
(7)(i) If s1 is convergent to finite number, then there exists a real number
g such that lim s1 = g and for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ≤ m holds |s1(m)− lim s1| < p,

(ii) if s1 is convergent to +∞, then lim s1 = +∞, and
(iii) if s1 is convergent to −∞, then lim s1 = −∞.
(8) If s1 is non-negative, then s1 is not convergent to −∞.
(9) If s1 is convergent and for every natural number k holds s1(k) ≤ p, then
lim s1 ≤ p.

(10) If s1 is convergent and for every natural number k holds p ≤ s1(k), then
p ≤ lim s1.

(11) Suppose that
(i) s2 is convergent,
(ii) s3 is convergent,
(iii) s2 is non-negative,
(iv) s3 is non-negative, and
(v) for every natural number k holds s1(k) = s2(k) + s3(k).
Then s1 is non-negative and convergent and lim s1 = lim s2 + lim s3.

(12) Suppose for every natural number n holds G(n) = F (n)�D and x ∈ D.
Then
(i) if F#x is convergent to +∞, then G#x is convergent to +∞,
(ii) if F#x is convergent to −∞, then G#x is convergent to −∞,
(iii) if F#x is convergent to finite number, then G#x is convergent to finite
number, and

(iv) if F#x is convergent, then G#x is convergent.

(13) If E = dom f and f is measurable on E and f is non-negative and
M(E ∩ EQ-dom(f,+∞)) 6= 0, then

∫
f dM = +∞.

(14)
∫
χE,X dM =M(E) and

∫
χE,X�E dM =M(E).

(15) Suppose that
(i) E ⊆ dom f,
(ii) E ⊆ dom g,
(iii) f is measurable on E,
(iv) g is measurable on E,
(v) f is non-negative, and
(vi) for every element x of X such that x ∈ E holds f(x) ≤ g(x).
Then

∫
f�E dM ≤

∫
g�E dM.
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2. Selected Properties of Extended Real Sequence

Let f be an extended real-valued function and let x be a set. Then f(x) is
an element of R.
Let s be an extended real-valued function. The functor (

∑κ
α=0 s(α))κ∈N

yields a sequence of extended reals and is defined by:

(Def. 1) (
∑κ
α=0 s(α))κ∈N(0) = s(0) and for every natural number n holds

(
∑κ
α=0 s(α))κ∈N(n+ 1) = (

∑κ
α=0 s(α))κ∈N(n) + s(n+ 1).

Let s be an extended real-valued function. We say that s is summable if and
only if:

(Def. 2) (
∑κ
α=0 s(α))κ∈N is convergent.

Let s be an extended real-valued function. The functor
∑
s yielding an

extended real number is defined as follows:

(Def. 3)
∑
s = lim((

∑κ
α=0 s(α))κ∈N).

Next we state several propositions:

(16) If s1 is non-negative, then (
∑κ
α=0(s1)(α))κ∈N is non-negative and

(
∑κ
α=0(s1)(α))κ∈N is non-decreasing.

(17) If for every natural number n holds 0 < s1(n), then for every natural
number m holds 0 < (

∑κ
α=0(s1)(α))κ∈N(m).

(18) If F has the same dom and for every natural number n holds G(n) =
F (n)�D, then G has the same dom.

(19) Suppose that

(i) D ⊆ domF (0),
(ii) for every natural number n holds G(n) = F (n)�D, and

(iii) for every element x of X such that x ∈ D holds F#x is convergent.
Then limF �D = limG.

(20) Suppose F has the same dom and E ⊆ domF (0) and for every natural
number m holds F (m) is measurable on E and G(m) = F (m)�E. Then
G(n) is measurable on E.

(21) Suppose that

(i) E ⊆ domF (0),
(ii) G has the same dom,

(iii) for every element x of X such that x ∈ E holds F#x is summable, and
(iv) for every natural number n holds G(n) = F (n)�E.

Let x be an element of X. If x ∈ E, then G#x is summable.
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3. Partial Sums of Functional Sequence and their Properties

Let X be a non empty set and let F be a sequence of partial functions from
X into R. The functor (

∑κ
α=0 F (α))κ∈N yields a sequence of partial functions

from X into R and is defined as follows:
(Def. 4) (

∑κ
α=0 F (α))κ∈N(0) = F (0) and for every natural number n holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

Let X be a set and let F be a sequence of partial functions from X into R.
We say that F is additive if and only if:

(Def. 5) For all natural numbers n, m such that n 6= m and for every set x such
that x ∈ domF (n) ∩ domF (m) holds F (n)(x) 6= +∞ or F (m)(x) 6= −∞.
Next we state a number of propositions:

(22) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(23) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and (

∑κ
α=0 F (α))κ∈N(n)(z) = +∞, then

there exists a natural number m such that m ≤ n and F (m)(z) = +∞.
(24) If F is additive and z ∈ dom(

∑κ
α=0 F (α))κ∈N(n) and

(
∑κ
α=0 F (α))κ∈N(n)(z) = +∞ and m ≤ n, then F (m)(z) 6= −∞.

(25) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and (

∑κ
α=0 F (α))κ∈N(n)(z) = −∞, then

there exists a natural number m such that m ≤ n and F (m)(z) = −∞.
(26) If F is additive and z ∈ dom(

∑κ
α=0 F (α))κ∈N(n) and

(
∑κ
α=0 F (α))κ∈N(n)(z) = −∞ and m ≤ n, then F (m)(z) 6= +∞.

(27) If F is additive, then (
∑κ
α=0 F (α))κ∈N(n)−1({−∞}) ∩ F (n +

1)−1({+∞}) = ∅ and (
∑κ
α=0 F (α))κ∈N(n)−1({+∞})∩F (n+1)−1({−∞}) =

∅.
(28) If F is additive, then dom(

∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges

over elements of N: k ≤ n}.
(29) If F is additive and has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) =

domF (0).

(30) If for every natural number n holds F (n) is non-negative, then F is
additive.

(31) If F is additive and for every n holds G(n) = F (n)�D, then G is additive.

(32) If F is additive and has the same dom and D ⊆ domF (0) and x ∈ D,
then (

∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(33) Suppose F is additive and has the same dom and D ⊆ domF (0) and
x ∈ D. Then
(i) (

∑κ
α=0(F#x)(α))κ∈N is convergent to finite number iff

(
∑κ
α=0 F (α))κ∈N#x is convergent to finite number,

(ii) (
∑κ
α=0(F#x)(α))κ∈N is convergent to +∞ iff (

∑κ
α=0 F (α))κ∈N#x is

convergent to +∞,
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(iii) (
∑κ
α=0(F#x)(α))κ∈N is convergent to −∞ iff (

∑κ
α=0 F (α))κ∈N#x is

convergent to −∞, and
(iv) (

∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is conver-

gent.

(34) If F is additive and has the same dom and dom f ⊆ domF (0) and
x ∈ dom f and F#x is summable and f(x) =

∑
F#x, then f(x) =

lim((
∑κ
α=0 F (α))κ∈N#x).

(35) Suppose that for every natural number m holds F (m) is simple function
in S. Then F is additive and (

∑κ
α=0 F (α))κ∈N(n) is simple function in S.

(36) If for every natural number m holds F (m) is non-negative, then
(
∑κ
α=0 F (α))κ∈N(n) is non-negative.

(37) If F has the same dom and x ∈ domF (0) and for every natural number
k holds F (k) is non-negative and n ≤ m, then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤

(
∑κ
α=0 F (α))κ∈N(m)(x).

(38) Suppose F has the same dom and x ∈ domF (0) and for every natural
number m holds F (m) is non-negative. Then (

∑κ
α=0 F (α))κ∈N#x is non-

decreasing and (
∑κ
α=0 F (α))κ∈N#x is convergent.

(39) If for every natural number m holds F (m) is without −∞, then
(
∑κ
α=0 F (α))κ∈N(n) is without −∞.

(40) If for every natural number m holds F (m) is without +∞, then
(
∑κ
α=0 F (α))κ∈N(n) is without +∞.

(41) Suppose that for every natural number n holds F (n) is measurable on
E and F (n) is without −∞. Then (

∑κ
α=0 F (α))κ∈N(m) is measurable on

E.

(42) Suppose that
(i) F is additive and has the same dom,
(ii) G is additive and has the same dom,
(iii) x ∈ domF (0) ∩ domG(0), and
(iv) for every natural number k and for every element y of X such that
y ∈ domF (0) ∩ domG(0) holds F (k)(y) ≤ G(k)(y).
Then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤ (

∑κ
α=0G(α))κ∈N(n)(x).

(43) Let X be a non empty set and F be a sequence of partial functions from
X into R. If F is additive and has the same dom, then (

∑κ
α=0 F (α))κ∈N

has the same dom.

(44) Suppose that
(i) domF (0) = E,
(ii) F is additive and has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
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Then lim((
∑κ
α=0 F (α))κ∈N) is measurable on E.

(45) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

(46) Suppose that
(i) E = domF (0),
(ii) F is additive and has the same dom, and
(iii) for every natural number n holds F (n) is measurable on E and F (n)
is non-negative and I(n) =

∫
F (n) dM.

Then
∫
(
∑κ
α=0 F (α))κ∈N(m) dM = (

∑κ
α=0 I(α))κ∈N(m).

4. Sequence of Measurable Functions

Next we state two propositions:

(47) Suppose that
(i) E ⊆ dom f,
(ii) f is non-negative,
(iii) f is measurable on E,
(iv) F is additive,
(v) for every n holds F (n) is simple function in S and F (n) is non-negative
and E ⊆ domF (n), and

(vi) for every x such that x ∈ E holds F#x is summable and f(x) =∑
F#x.
Then there exists a sequence I of extended reals such that for every n
holds I(n) =

∫
F (n)�E dM and I is summable and

∫
f�E dM =

∑
I.

(48) Suppose E ⊆ dom f and f is non-negative and f is measurable on E.
Then there exists a sequence g of partial functions from X into R such
that
(i) g is additive,
(ii) for every natural number n holds g(n) is simple function in S and g(n)
is non-negative and g(n) is measurable on E,

(iii) for every element x of X such that x ∈ E holds g#x is summable and
f(x) =

∑
g#x, and

(iv) there exists a sequence I of extended reals such that for every natural
number n holds I(n) =

∫
g(n)�E dM and I is summable and

∫
f�E dM =∑

I.

Let X be a non empty set. Observe that there exists a sequence of partial
functions from X into R which is additive and has the same dom.
Let C, D, X be non empty sets, let F be a function from C×D into X→̇R,

let c be an element of C, and let d be an element of D. Then F (c, d) is a partial
function from X to R.
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Let C, D, X be non empty sets, let F be a function from C × D into X,
and let c be an element of C. The functor curry(F, c) yields a function from D
into X and is defined as follows:

(Def. 6) For every element d of D holds (curry(F, c))(d) = F (c, d).

Let C, D, X be non empty sets, let F be a function from C × D into X,
and let d be an element of D. The functor curry′(F, d) yields a function from C
into X and is defined as follows:

(Def. 7) For every element c of C holds (curry′(F, d))(c) = F (c, d).

Let X, Y be sets, let F be a function from N×N into X→̇Y, and let n be a
natural number. The functor curry(F, n) yielding a sequence of partial functions
from X into Y is defined by:

(Def. 8) For every natural number m holds (curry(F, n))(m) = F (n, m).

The functor curry′(F, n) yields a sequence of partial functions from X into Y
and is defined by:

(Def. 9) For every natural number m holds (curry′(F, n))(m) = F (m, n).

Let X be a non empty set, let F be a function from N into (X→̇R)N, and
let n be a natural number. Then F (n) is a sequence of partial functions from X
into R.
The following four propositions are true:

(49) Suppose E = domF (0) and F has the same dom and for every natural
number n holds F (n) is non-negative and F (n) is measurable on E. Then
there exists a function F1 from N into (X→̇R)N such that for every natural
number n holds
(i) for every natural number m holds F1(n)(m) is simple function in S and
domF1(n)(m) = domF (n),

(ii) for every natural number m holds F1(n)(m) is non-negative,
(iii) for all natural numbers j, k such that j ≤ k and for every element x of
X such that x ∈ domF (n) holds F1(n)(j)(x) ≤ F1(n)(k)(x), and

(iv) for every element x of X such that x ∈ domF (n) holds F1(n)#x is
convergent and lim(F1(n)#x) = F (n)(x).

(50) Suppose that
(i) E = domF (0),
(ii) F is additive and has the same dom, and
(iii) for every natural number n holds F (n) is measurable on E and F (n)
is non-negative.
Then there exists a sequence I of extended reals such that for every natural
number n holds
I(n) =

∫
F (n) dM and

∫
(
∑κ
α=0 F (α))κ∈N(n) dM = (

∑κ
α=0 I(α))κ∈N(n).

(51) Suppose that
(i) E ⊆ domF (0),
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(ii) F is additive and has the same dom,
(iii) for every natural number n holds F (n) is non-negative and F (n) is
measurable on E, and

(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) =

∫
F (n)�E dM and I is summable and∫

lim((
∑κ
α=0 F (α))κ∈N)�E dM =

∑
I.

(52) Suppose that
(i) E = domF (0),
(ii) F (0) is non-negative,
(iii) F has the same dom,
(iv) for every natural number n holds F (n) is measurable on E,
(v) for all natural numbers n, m such that n ≤ m and for every element x
of X such that x ∈ E holds F (n)(x) ≤ F (m)(x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then there exists a sequence I of extended reals such that for every natural
number n holds I(n) =

∫
F (n) dM and I is convergent and

∫
limF dM =

lim I.
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