Uniqueness of Factoring an Integer and Multiplicative Group $\mathbb{Z}/p\mathbb{Z}^*$

Hiroyuki Okazaki Shinshu University Nagano, Japan Yasunari Shidama Shinshu University Nagano, Japan

Summary. In the [20], it had been proven that the Integers modulo p, in this article we shall refer as $\mathbb{Z}/p\mathbb{Z}$, constitutes a field if and only if p is a prime. Then the prime modulo $\mathbb{Z}/p\mathbb{Z}$ is an additive cyclic group and $\mathbb{Z}/p\mathbb{Z}^* = \mathbb{Z}/p\mathbb{Z} \setminus \{0\}$ is a multiplicative cyclic group, too. The former has been proven in the [23]. However, the latter had not been proven yet. In this article, first, we prove a theorem concerning the LCM to prove the existence of primitive elements of \mathbb{Z}/p^* . Moreover we prove the uniqueness of factoring an integer. Next we define the multiplicative group $\mathbb{Z}/p\mathbb{Z}^*$ and prove it is cyclic.

MML identifier: INT_7, version: 7.8.10 4.99.1005

The articles [31], [3], [9], [1], [25], [2], [32], [8], [24], [4], [19], [29], [28], [13], [7], [26], [22], [11], [17], [18], [12], [16], [30], [23], [27], [5], [14], [15], [20], [21], [6], and [10] provide the terminology and notation for this paper.

1. Uniqueness of Factoring an Integer

In this paper x, X denote sets.

Next we state four propositions:

- (1) For every many sorted set p indexed by X such that support $p = \{x\}$ holds $p = (X \mapsto 0) + (x, p(x))$.
- (2) Let X be a set and p, q, r be real-valued many sorted sets indexed by X. If support $p \cap \text{support } q = \emptyset$ and support $p \cup \text{support } q = \text{support } r$ and $p \upharpoonright \text{support } p = r \upharpoonright \text{support } p$ and $q \upharpoonright \text{support } q = r \upharpoonright \text{support } q$, then p + q = r.

- (3) For every set X and for all many sorted sets p, q indexed by X such that $p \upharpoonright \text{support } p = q \upharpoonright \text{support } q \text{ holds } p = q$.
- (4) For every set X and for all bags p, q of X such that support $p = \emptyset$ and support $q = \emptyset$ holds p = q.

Let p be a bag of Prime. We say that p is prime-factorization-like if and only if:

(Def. 1) For every prime number x such that $x \in \text{support } p$ there exists a natural number n such that 0 < n and $p(x) = x^n$.

Let n be a non empty natural number. Note that $\mathsf{PPF}(n)$ is prime-factorization-like.

Next we state a number of propositions:

- (5) For all prime numbers p, q and for all natural numbers n, m such that $p \mid m \cdot q^n$ and $p \neq q$ holds $p \mid m$.
- (6) Let f be a finite sequence of elements of \mathbb{N} , b be a bag of Prime, and a be a prime number. Suppose b is prime-factorization-like and $\prod b \neq 1$ and $a \mid \prod b$ and $\prod b = \prod f$ and $f = b \cdot \text{CFS}(\text{support } b)$. Then $a \in \text{support } b$.
- (7) For all bags p, q of Prime such that support $p \subseteq \text{support } q$ and $p \upharpoonright \text{support } p = q \upharpoonright \text{support } p \text{ holds } \prod p \mid \prod q$.
- (8) Let p be a bag of Prime and x be a prime number. If p is prime-factorization-like, then $x \mid \prod p$ iff $x \in \text{support } p$.
- (9) For all non empty natural numbers n, m, k such that k = lcm(n, m) holds support $\text{PPF}(k) = \text{support PPF}(n) \cup \text{support PPF}(m)$.
- (10) For every set X and for all bags b_1 , b_2 of X holds support $\min(b_1, b_2) = \text{support } b_1 \cap \text{support } b_2$.
- (11) For all non empty natural numbers n, m, k such that $k = n \gcd m$ holds support $PPF(k) = \text{support } PPF(n) \cap \text{support } PPF(m)$.
- (12) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is prime-factorization-like and support p misses support q. Then $\prod p$ and $\prod q$ are relative prime.
- (13) For every bag p of Prime such that p is prime-factorization-like holds $\prod p \neq 0$.
- (14) For every bag p of Prime such that p is prime-factorization-like holds $\prod p = 1$ iff support $p = \emptyset$.
- (15) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is prime-factorization-like and $\prod p = \prod q$. Then p = q.
- (16) Let p be a bag of Prime and n be a non empty natural number. If p is prime-factorization-like and $n = \prod p$, then PPF(n) = p.
- (17) Let n, m be elements of \mathbb{N} . Suppose $1 \leq n$ and $1 \leq m$. Then there exist elements m_0 , n_0 of \mathbb{N} such that $\operatorname{lcm}(n, m) = n_0 \cdot m_0$ and $n_0 \gcd m_0 = 1$

and $n_0 \mid n$ and $m_0 \mid m$ and $n_0 \neq 0$ and $m_0 \neq 0$.

2. Multiplicative Group $\mathbb{Z}/p\mathbb{Z}^*$

Let n be a natural number. Let us assume that 1 < n. The functor \mathbb{Z}_n^* yields a non empty finite subset of \mathbb{N} and is defined by:

(Def. 2) $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{0\}.$

We now state the proposition

(18) For every natural number n such that 1 < n holds $\overline{\mathbb{Z}_n^*} = n - 1$.

Let n be a prime number. The functor $\cdot_{\mathbb{Z}_n^*}$ yielding a binary operation on \mathbb{Z}_n^* is defined by:

(Def. 3) $\cdot_{\mathbb{Z}_n^*} = \cdot_{\mathbb{Z}_n} \upharpoonright \mathbb{Z}_n^*$.

One can prove the following proposition

(19) For every prime number p holds $\langle \mathbb{Z}_p^*, \cdot_{\mathbb{Z}_p^*} \rangle$ is associative, commutative, and group-like.

Let p be a prime number. The functor $\mathbb{Z}/p\mathbb{Z}^*$ yielding a commutative group is defined by:

(Def. 4) $\mathbb{Z}/p\mathbb{Z}^* = \langle \mathbb{Z}_p^*, \cdot_{\mathbb{Z}_p^*} \rangle$.

The following three propositions are true:

- (20) Let p be a prime number, x, y be elements of $\mathbb{Z}/p\mathbb{Z}^*$, and x_1 , y_1 be elements of \mathbb{Z}_p^R . If $x = x_1$ and $y = y_1$, then $x \cdot y = x_1 \cdot y_1$.
- (21) For every prime number p holds $\mathbf{1}_{\mathbb{Z}/p\mathbb{Z}^*} = 1$ and $\mathbf{1}_{\mathbb{Z}/p\mathbb{Z}^*} = 1_{\mathbb{Z}_n^R}$.
- (22) For every prime number p and for every element x of $\mathbb{Z}/p\mathbb{Z}^*$ and for every element x_1 of $\mathbb{Z}_p^{\mathbb{R}}$ such that $x = x_1$ holds $x^{-1} = x_1^{-1}$.

Let p be a prime number. One can verify that $\mathbb{Z}/p\mathbb{Z}^*$ is finite.

We now state several propositions:

- (23) For every prime number p holds $\operatorname{ord}(\mathbb{Z}/p\mathbb{Z}^*) = p 1$.
- (24) Let G be a group, a be an element of G, and i be an integer. Suppose a is not of order 0. Then there exist elements n, k of \mathbb{N} such that $a^i = a^n$ and $n = k \cdot \operatorname{ord}(a) + i$.
- (25) Let G be a commutative group, a, b be elements of G, and n, m be natural numbers. If G is finite and $\operatorname{ord}(a) = n$ and $\operatorname{ord}(b) = m$ and $n \gcd m = 1$, then $\operatorname{ord}(a \cdot b) = n \cdot m$.
- (26) For every non empty zero structure L and for every polynomial p of L such that $0 \le \deg p$ holds p is non-zero.
- (27) For every field L and for every polynomial f of L such that $0 \le \deg f$ holds Roots f is a finite set and $\overline{\overline{\text{Roots } f}} \le \deg f$.

- (28) Let p be a prime number, z be an element of $\mathbb{Z}/p\mathbb{Z}^*$, and y be an element of \mathbb{Z}_p^R . If z = y, then for every element n of \mathbb{N} holds $\operatorname{power}_{\mathbb{Z}/p\mathbb{Z}^*}(z, n) = \operatorname{power}_{\mathbb{Z}_p^R}(y, n)$.
- (29) Let p be a prime number, a, b be elements of $\mathbb{Z}/p\mathbb{Z}^*$, and n be a natural number. If 0 < n and $\operatorname{ord}(a) = n$ and $b^n = 1$, then b is an element of $\operatorname{gr}(\{a\})$.
- (30) Let G be a group, z be an element of G, and d, l be elements of N. If G is finite and $\operatorname{ord}(z) = d \cdot l$, then $\operatorname{ord}(z^d) = l$.
- (31) For every prime number p holds $\mathbb{Z}/p\mathbb{Z}^*$ is a cyclic group.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [5] Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485–492, 1996.
- [6] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [7] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321–328, 1990.
- [11] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573–577, 1997.
- [12] Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179–186, 2004.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [14] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990
- [15] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [16] Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
- [17] Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339–346, 2001.
- [18] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49–58, 2004.
- [19] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95–110, 2001.
- [20] Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.
- [21] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Schur's theorem on the stability of networks. *Formalized Mathematics*, 14(4):135–142, 2006.
- [22] Christoph Schwarzweller and Andrzej Trybulec. The evaluation of multivariate polynomials. Formalized Mathematics, 9(2):331–338, 2001.
- [23] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Mathematics, 2(5):623–627, 1991.
- [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.

- [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
 [26] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
- [27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
- [28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, [29]
- 1990.
 [30] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
- [31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(**1**):73–83, 1990.

Received January 31, 2008