
FORMALIZED MATHEMATICS

Vol. 16, No. 2, Pages 91–96, 2008

Helly Property for Subtrees1

Jessica Enright
University of Alberta
Edmonton, Canada

Piotr Rudnicki
University of Alberta
Edmonton, Canada

Summary. We prove, following [5, p. 92], that any family of subtrees of a
finite tree satisfies the Helly property.

MML identifier: HELLY, version: 7.8.09 4.97.1001

The articles [12], [4], [10], [3], [2], [1], [11], [9], [8], [7], and [6] provide the notation
and terminology for this paper.

1. General Preliminaries

One can prove the following proposition

(1) For every non empty finite sequence p holds 〈p(1)〉 aa p = p.
Let p, q be finite sequences. The functor maxPrefix(p, q) yields a finite se-

quence and is defined by:

(Def. 1) maxPrefix(p, q) � p and maxPrefix(p, q) � q and for every finite sequen-
ce r such that r � p and r � q holds r � maxPrefix(p, q).

Let us observe that the functor maxPrefix(p, q) is commutative.
Next we state several propositions:

(2) For all finite sequences p, q holds p � q iff maxPrefix(p, q) = p.
(3) For all finite sequences p, q holds lenmaxPrefix(p, q) ≤ len p.
(4) For every non empty finite sequence p holds 〈p(1)〉 � p.
(5) For all non empty finite sequences p, q such that p(1) = q(1) holds
1 ≤ lenmaxPrefix(p, q).

1This work has been partially supported by the NSERC grant OGP 9207.

91
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/helly.miz
http://ftp.mizar.org/


92 jessica enright and piotr rudnicki

(6) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds (maxPrefix(p, q))(j) = p(j).

(7) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds p(j) = q(j).

(8) For all finite sequences p, q holds p � q iff lenmaxPrefix(p, q) < len p.
(9) For all finite sequences p, q such that p � q and q � p holds
p(lenmaxPrefix(p, q) + 1) 6= q(lenmaxPrefix(p, q) + 1).

2. Graph Preliminaries

Next we state three propositions:

(10) For every graph G and for every walkW of G and for all natural numbers
m, n holds len(W.cut(m,n)) ≤ lenW.

(11) Let G be a graph, W be a walk of G, and m, n be natural numbers. If
W.cut(m,n) is non trivial, then W is non trivial.

(12) Let G be a graph, W be a walk of G, and m, n, i be odd natural
numbers. Suppose m ≤ n ≤ lenW and i ≤ len(W.cut(m,n)). Then there
exists an odd natural number j such that (W.cut(m,n))(i) = W (j) and
j = (m+ i)− 1 and j ≤ lenW.
Let G be a graph. One can verify that every walk of G is non empty.
The following propositions are true:

(13) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.vertices() ⊆W2.vertices().

(14) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.edges() ⊆W2.edges().

(15) For every graph G and for all walks W1, W2 of G holds W1 �
W1.append(W2).

(16) For every graph G and for all trails W1, W2 of G such that W1.last() =
W2.first() andW1.edges() missesW2.edges() holdsW1.append(W2) is trail-
like.

(17) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P1 is open and P2 is open and P1.edges() misses P2.edges() and if
P1.first() ∈ P2.vertices(), then P1.first() = P2.last() and P1.vertices() ∩
P2.vertices() ⊆ {P1.first(), P1.last()}. Then P1.append(P2) is path-like.

(18) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() =
P2.first() and P1 is open and P2 is open and P1.vertices()∩P2.vertices() =
{P1.last()}. Then P1.append(P2) is open and path-like.

(19) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P2.last() = P1.first() and P1 is open and P2 is open and P1.edges()



helly property for subtrees 93

misses P2.edges() and P1.vertices()∩P2.vertices() = {P1.last(), P1.first()}.
Then P1.append(P2) is cycle-like.

(20) Let G be a simple graph, W1, W2 be walks of G, and k be an odd
natural number. Suppose k ≤ lenW1 and k ≤ lenW2 and for every odd
natural number j such that j ≤ k holdsW1(j) =W2(j). Let j be a natural
number. If 1 ≤ j ≤ k, then W1(j) =W2(j).

(21) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() holds lenmaxPrefix(W1,W2) is odd.

(22) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() and W1 �W2 holds lenmaxPrefix(W1,W2) + 2 ≤ lenW1.

(23) For every non-multi graph G and for all walks W1, W2 of G such
that W1.first() = W2.first() and W1 � W2 and W2 � W1 holds
W1(lenmaxPrefix(W1,W2) + 2) 6=W2(lenmaxPrefix(W1,W2) + 2).

3. Trees

A tree is a tree-like graph. Let G be a graph. A subtree of G is a tree-like
subgraph of G.
Let T be a tree. Observe that every walk of T which is trail-like is also

path-like.
One can prove the following proposition

(24) For every tree T and for every path P of T such that P is non trivial
holds P is open.

Let T be a tree. Note that every path of T which is non trivial is also open.
The following propositions are true:

(25) Let T be a tree, P be a path of T , and i, j be odd natural numbers. If
i < j ≤ lenP, then P (i) 6= P (j).

(26) Let T be a tree, a, b be vertices of T , and P1, P2 be paths of T . If P1 is
walk from a to b and P2 is walk from a to b, then P1 = P2.

Let T be a tree and let a, b be vertices of T . The functor T .pathBetween(a, b)
yields a path of T and is defined as follows:

(Def. 2) T .pathBetween(a, b) is walk from a to b.

One can prove the following propositions:

(27) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).first() = a and (T .pathBetween(a, b)).last() = b.

(28) For every tree T and for all vertices a, b of T holds a, b ∈
(T .pathBetween(a, b)).vertices().

Let T be a tree and let a be a vertex of T . Observe that T .pathBetween(a, a)
is closed.



94 jessica enright and piotr rudnicki

Let T be a tree and let a be a vertex of T .
One can check that T .pathBetween(a, a) is trivial.
We now state a number of propositions:

(29) For every tree T and for every vertex a of T holds
(T .pathBetween(a, a)).vertices() = {a}.

(30) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).reverse() = T .pathBetween(b, a).

(31) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).vertices() = (T .pathBetween(b, a)).vertices().

(32) Let T be a tree, a, b be vertices of T , t be a subtree of T , and a′,
b′ be vertices of t. If a = a′ and b = b′, then T .pathBetween(a, b) =
t.pathBetween(a′, b′).

(33) Let T be a tree, a, b be vertices of T , and t be a subtree of
T . Suppose a ∈ the vertices of t and b ∈ the vertices of t. Then
(T .pathBetween(a, b)).vertices() ⊆ the vertices of t.

(34) Let T be a tree, P be a path of T , a, b be vertices of T , and i, j be
odd natural numbers. If i ≤ j ≤ lenP and P (i) = a and P (j) = b, then
T .pathBetween(a, b) = P .cut(i, j).

(35) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, b) =
(T .pathBetween(a, c)).append((T .pathBetween(c, b))).

(36) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, c) �
T .pathBetween(a, b).

(37) For every tree T and for all paths P1, P2 of T such that
P1.last() = P2.first() and P1.vertices() ∩ P2.vertices() = {P1.last()} holds
P1.append(P2) is path-like.

(38) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff (T .pathBetween(a, c)).vertices() ∩
(T .pathBetween(c, b)).vertices() = {c}.

(39) Let T be a tree, a, b, c, d be vertices of T , and P1, P2 be paths of
T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P1 � P2 and P2 � P1 and d = P1(lenmaxPrefix(P1, P2)). Then
(T .pathBetween(d, b)).vertices()∩ (T .pathBetween(d, c)).vertices() = {d}.
Let T be a tree and let a, b, c be vertices of T . The functor middleVertex(a, b, c)

yielding a vertex of T is defined as follows:

(Def. 3) (T .pathBetween(a, b)).vertices() ∩ (T .pathBetween(b, c)).vertices()∩
(T .pathBetween(c, a)).vertices() = {middleVertex(a, b, c)}.
We now state a number of propositions:



helly property for subtrees 95

(40) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(a, c, b).

(41) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, a, c).

(42) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, c, a).

(43) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, a, b).

(44) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, b, a).

(45) For every tree T and for all vertices a, b, c of T such that c ∈
(T .pathBetween(a, b)).vertices() holds middleVertex(a, b, c) = c.

(46) For every tree T and for every vertex a of T holds middleVertex(a, a, a) =
a.

(47) For every tree T and for all vertices a, b of T holds middleVertex(a, a, b) =
a.

(48) For every tree T and for all vertices a, b of T holds middleVertex(a, b, a) =
a.

(49) For every tree T and for all vertices a, b of T holds middleVertex(a, b, b) =
b.

(50) Let T be a tree, P1, P2 be paths of T , and a, b, c be vertices of
T . If P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c) and
b /∈ P2.vertices() and c /∈ P1.vertices(), then middleVertex(a, b, c) =
P1(lenmaxPrefix(P1, P2)).

(51) Let T be a tree, P1, P2, P3, P4 be paths of T , and a, b, c be vertices
of T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P3 = T .pathBetween(b, a) and P4 = T .pathBetween(b, c) and
b /∈ P2.vertices() and c /∈ P1.vertices() and a /∈ P4.vertices(). Then
P1(lenmaxPrefix(P1, P2)) = P3(lenmaxPrefix(P3, P4)).

(52) Let T be a tree, a, b, c be vertices of T , and S be a non empty set.
Suppose that for every set s such that s ∈ S holds there exists a subtree
t of T such that s = the vertices of t but a, b ∈ s or a, c ∈ s or b, c ∈ s.
Then

⋂
S 6= ∅.

4. The Helly Property

Let F be a set. We say that F has Helly property if and only if:

(Def. 4) For every non empty set H such that H ⊆ F and for all sets x, y such
that x, y ∈ H holds x meets y holds

⋂
H 6= ∅.



96 jessica enright and piotr rudnicki

One can prove the following proposition

(53) Let T be a tree and X be a finite set such that for every set x such that
x ∈ X there exists a subtree t of T such that x = the vertices of t. Then
X has Helly property.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[5] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

[6] Gilbert Lee. Trees and graph components. Formalized Mathematics, 13(2):271–277, 2005.
[7] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253–269, 2005.
[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,
13(2):235–252, 2005.

[9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized
Mathematics, 5(3):297–304, 1996.

[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[11] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received January 10, 2008


