# Helly Property for Subtrees ${ }^{1}$ 

Jessica Enright<br>University of Alberta<br>Edmonton, Canada

Piotr Rudnicki<br>University of Alberta<br>Edmonton, Canada

Summary. We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.

MML identifier: HELLY, version: $\underline{7.8 .094 .97 .1001}$

The articles [12], [4], [10], [3], [2], [1], [11], [9], [8], [7], and [6] provide the notation and terminology for this paper.

## 1. General Preliminaries

One can prove the following proposition
(1) For every non empty finite sequence $p$ holds $\langle p(1)\rangle \sim p=p$.

Let $p, q$ be finite sequences. The functor $\operatorname{maxPrefix}(p, q)$ yields a finite sequence and is defined by:
(Def. 1) maxPrefix $(p, q) \preceq p$ and maxPrefix $(p, q) \preceq q$ and for every finite sequence $r$ such that $r \preceq p$ and $r \preceq q$ holds $r \preceq \operatorname{maxPrefix}(p, q)$.
Let us observe that the functor maxPrefix $(p, q)$ is commutative.
Next we state several propositions:
(2) For all finite sequences $p, q$ holds $p \preceq q$ iff $\operatorname{maxPrefix}(p, q)=p$.
(3) For all finite sequences $p, q$ holds len $\operatorname{maxPrefix}(p, q) \leq \operatorname{len} p$.
(4) For every non empty finite sequence $p$ holds $\langle p(1)\rangle \preceq p$.
(5) For all non empty finite sequences $p, q$ such that $p(1)=q(1)$ holds $1 \leq$ len maxPrefix $(p, q)$.

[^0](6) For all finite sequences $p, q$ and for every natural number $j$ such that $j \leq$ len maxPrefix $(p, q)$ holds $(\operatorname{maxPrefix}(p, q))(j)=p(j)$.
(7) For all finite sequences $p, q$ and for every natural number $j$ such that $j \leq$ len maxPrefix $(p, q)$ holds $p(j)=q(j)$.
(8) For all finite sequences $p, q$ holds $p \npreceq q$ iff len $\operatorname{maxPrefix}(p, q)<\operatorname{len} p$.
(9) For all finite sequences $p, q$ such that $p \npreceq q$ and $q \npreceq p$ holds $p($ len maxPrefix $(p, q)+1) \neq q($ len maxPrefix $(p, q)+1)$.

## 2. Graph Preliminaries

Next we state three propositions:
(10) For every graph $G$ and for every walk $W$ of $G$ and for all natural numbers $m, n$ holds len $(W \cdot \operatorname{cut}(m, n)) \leq \operatorname{len} W$.
(11) Let $G$ be a graph, $W$ be a walk of $G$, and $m, n$ be natural numbers. If $W \cdot \operatorname{cut}(m, n)$ is non trivial, then $W$ is non trivial.
(12) Let $G$ be a graph, $W$ be a walk of $G$, and $m, n, i$ be odd natural numbers. Suppose $m \leq n \leq \operatorname{len} W$ and $i \leq \operatorname{len}(W \cdot \operatorname{cut}(m, n))$. Then there exists an odd natural number $j$ such that $(W \cdot \operatorname{cut}(m, n))(i)=W(j)$ and $j=(m+i)-1$ and $j \leq \operatorname{len} W$.
Let $G$ be a graph. One can verify that every walk of $G$ is non empty.
The following propositions are true:
(13) For every graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ such that $W_{1} \preceq W_{2}$ holds $W_{1}$.vertices ()$\subseteq W_{2}$.vertices () .
(14) For every graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ such that $W_{1} \preceq W_{2}$ holds $W_{1}$.edges ()$\subseteq W_{2}$.edges () .
(15) For every graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ holds $W_{1} \preceq$ $W_{1}$.append $\left(W_{2}\right)$.
(16) For every graph $G$ and for all trails $W_{1}, W_{2}$ of $G$ such that $W_{1}$.last ()$=$ $W_{2}$.first() and $W_{1}$.edges() misses $W_{2}$.edges() holds $W_{1}$.append $\left(W_{2}\right)$ is traillike.
(17) Let $G$ be a graph and $P_{1}, P_{2}$ be paths of $G$. Suppose $P_{1}$.last( $)=P_{2}$.first() and $P_{1}$ is open and $P_{2}$ is open and $P_{1}$.edges () misses $P_{2}$.edges () and if $P_{1}$.first() $\in P_{2}$.vertices(), then $P_{1}$.first() $=P_{2}$.last() and $P_{1} \cdot$ vertices() $\cap$ $P_{2}$.vertices ()$\subseteq\left\{P_{1}\right.$.first ()$, P_{1}$.last ( $\left.)\right\}$. Then $P_{1}$.append $\left(P_{2}\right)$ is path-like.
(18) Let $G$ be a graph and $P_{1}, P_{2}$ be paths of $G$. Suppose $P_{1}$.last() $=$ $P_{2}$.first() and $P_{1}$ is open and $P_{2}$ is open and $P_{1}$.vertices() $\cap P_{2}$.vertices() $=$ $\left\{P_{1}\right.$.last ()$\}$. Then $P_{1}$.append $\left(P_{2}\right)$ is open and path-like.
(19) Let $G$ be a graph and $P_{1}, P_{2}$ be paths of $G$. Suppose $P_{1}$.last() $=P_{2}$.first() and $P_{2}$.last ()$=P_{1}$.first() and $P_{1}$ is open and $P_{2}$ is open and $P_{1}$.edges()
misses $P_{2}$.edges () and $P_{1}$.vertices( $) \cap P_{2}$.vertices ()$=\left\{P_{1}\right.$.last( $), P_{1}$.first( $\left.)\right\}$. Then $P_{1}$.append $\left(P_{2}\right)$ is cycle-like.
(20) Let $G$ be a simple graph, $W_{1}, W_{2}$ be walks of $G$, and $k$ be an odd natural number. Suppose $k \leq \operatorname{len} W_{1}$ and $k \leq \operatorname{len} W_{2}$ and for every odd natural number $j$ such that $j \leq k$ holds $W_{1}(j)=W_{2}(j)$. Let $j$ be a natural number. If $1 \leq j \leq k$, then $W_{1}(j)=W_{2}(j)$.
(21) For every graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ such that $W_{1}$.first ()$=$ $W_{2}$.first() holds len maxPrefix $\left(W_{1}, W_{2}\right)$ is odd.
(22) For every graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ such that $W_{1}$.first() $=$ $W_{2}$.first() and $W_{1} \npreceq W_{2}$ holds len maxPrefix $\left(W_{1}, W_{2}\right)+2 \leq \operatorname{len} W_{1}$.
(23) For every non-multi graph $G$ and for all walks $W_{1}, W_{2}$ of $G$ such that $W_{1}$.first() $=W_{2}$.first() and $W_{1} \npreceq W_{2}$ and $W_{2} \npreceq W_{1}$ holds $W_{1}\left(\right.$ len $\left.\operatorname{maxPrefix}\left(W_{1}, W_{2}\right)+2\right) \neq W_{2}\left(\right.$ len maxPrefix $\left.\left(W_{1}, W_{2}\right)+2\right)$.

## 3. Trees

A tree is a tree-like graph. Let $G$ be a graph. A subtree of $G$ is a tree-like subgraph of $G$.

Let $T$ be a tree. Observe that every walk of $T$ which is trail-like is also path-like.

One can prove the following proposition
(24) For every tree $T$ and for every path $P$ of $T$ such that $P$ is non trivial holds $P$ is open.
Let $T$ be a tree. Note that every path of $T$ which is non trivial is also open. The following propositions are true:
(25) Let $T$ be a tree, $P$ be a path of $T$, and $i, j$ be odd natural numbers. If $i<j \leq \operatorname{len} P$, then $P(i) \neq P(j)$.
(26) Let $T$ be a tree, $a, b$ be vertices of $T$, and $P_{1}, P_{2}$ be paths of $T$. If $P_{1}$ is walk from $a$ to $b$ and $P_{2}$ is walk from $a$ to $b$, then $P_{1}=P_{2}$.
Let $T$ be a tree and let $a, b$ be vertices of $T$. The functor $T$.pathBetween $(a, b)$ yields a path of $T$ and is defined as follows:
(Def. 2) $T$.pathBetween $(a, b)$ is walk from $a$ to $b$.
One can prove the following propositions:
(27) For every tree $T$ and for all vertices $a, b$ of $T$ holds
( $T$.pathBetween $(a, b))$.first ()$=a$ and $(T$.pathBetween $(a, b)) \cdot \operatorname{last}()=b$.
(28) For every tree $T$ and for all vertices $a$, $b$ of $T$ holds $a, b \in$ ( $T$.pathBetween $(a, b))$.vertices().
Let $T$ be a tree and let $a$ be a vertex of $T$. Observe that $T$.pathBetween $(a, a)$ is closed.

Let $T$ be a tree and let $a$ be a vertex of $T$.
One can check that $T$.pathBetween $(a, a)$ is trivial.
We now state a number of propositions:
(29) For every tree $T$ and for every vertex $a$ of $T$ holds $(T$.pathBetween $(a, a)) \cdot \operatorname{vertices}()=\{a\}$.
(30) For every tree $T$ and for all vertices $a, b$ of $T$ holds (T.pathBetween $(a, b))$.reverse ()$=T \cdot$ pathBetween $(b, a)$.
(31) For every tree $T$ and for all vertices $a, b$ of $T$ holds $(T \cdot p a t h B e t w e e n(a, b)) \cdot v e r t i c e s()=(T \cdot p a t h B e t w e e n(b, a)) \cdot v e r t i c e s()$.
(32) Let $T$ be a tree, $a, b$ be vertices of $T, t$ be a subtree of $T$, and $a^{\prime}$, $b^{\prime}$ be vertices of $t$. If $a=a^{\prime}$ and $b=b^{\prime}$, then $T$. pathBetween $(a, b)=$ $t$.pathBetween $\left(a^{\prime}, b^{\prime}\right)$.
(33) Let $T$ be a tree, $a, b$ be vertices of $T$, and $t$ be a subtree of $T$. Suppose $a \in$ the vertices of $t$ and $b \in$ the vertices of $t$. Then ( $T$.pathBetween $(a, b)$ ). vertices ()$\subseteq$ the vertices of $t$.
(34) Let $T$ be a tree, $P$ be a path of $T, a, b$ be vertices of $T$, and $i, j$ be odd natural numbers. If $i \leq j \leq \operatorname{len} P$ and $P(i)=a$ and $P(j)=b$, then $T$.pathBetween $(a, b)=P \cdot \operatorname{cut}(i, j)$.
(35) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds $c \in(T \cdot$.pathBetween $(a, b))$.vertices ()$\quad$ iff $T$.pathBetween $(a, b)=$ (T.pathBetween $(a, c))$.append $((T \cdot$ pathBetween $(c, b)))$.
(36) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds $c \quad \in \quad(T \cdot$.pathBetween $(a, b))$.vertices() iff $T$.pathBetween $(a, c) \preceq$ $T$.pathBetween $(a, b)$.
(37) For every tree $T$ and for all paths $P_{1}, P_{2}$ of $T$ such that $P_{1}$.last ()$=P_{2}$.first( ) and $P_{1}$.vertices ()$\cap P_{2}$.vertices ()$=\left\{P_{1}\right.$.last ()$\}$ holds $P_{1}$.append $\left(P_{2}\right)$ is path-like.
(38) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds $c \in(T$.pathBetween $(a, b))$.vertices () iff $(T$.pathBetween $(a, c))$.vertices ()$\cap$ $(T \cdot$ pathBetween $(c, b))$.vertices ()$=\{c\}$.
(39) Let $T$ be a tree, $a, b, c, d$ be vertices of $T$, and $P_{1}, P_{2}$ be paths of $T$. Suppose $P_{1}=T$.pathBetween $(a, b)$ and $P_{2}=T$.pathBetween $(a, c)$ and $P_{1} \npreceq P_{2}$ and $P_{2} \npreceq P_{1}$ and $d=P_{1}$ (len maxPrefix $\left(P_{1}, P_{2}\right)$ ). Then $(T$.pathBetween $(d, b))$.vertices ()$\cap(T \cdot$ pathBetween $(d, c))$.vertices ()$=\{d\}$.

Let $T$ be a tree and let $a, b, c$ be vertices of $T$. The functor middleVertex $(a, b, c)$ yielding a vertex of $T$ is defined as follows:
(Def. 3) (T.pathBetween $(a, b))$.vertices ()$\cap(T$.pathBetween $(b, c))$.vertices ()$\cap$ $(T \cdot \operatorname{pathBetween}(c, a)) \cdot \operatorname{vertices}()=\{\operatorname{middleVertex}(a, b, c)\}$.
We now state a number of propositions:
(40) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds middleVertex $(a, b, c)=$ middleVertex $(a, c, b)$.
(41) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds middleVertex $(a, b, c)=\operatorname{middleVertex}(b, a, c)$.
(42) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds middleVertex $(a, b, c)=\operatorname{middleVertex}(b, c, a)$.
(43) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds middleVertex $(a, b, c)=\operatorname{middleVertex}(c, a, b)$.
(44) For every tree $T$ and for all vertices $a, b, c$ of $T$ holds middleVertex $(a, b, c)=$ middleVertex $(c, b, a)$.
(45) For every tree $T$ and for all vertices $a, b, c$ of $T$ such that $c \in$ ( $T$.pathBetween $(a, b)$ ).vertices() holds middleVertex $(a, b, c)=c$.
(46) For every tree $T$ and for every vertex $a$ of $T$ holds middleVertex $(a, a, a)=$ $a$.
(47) For every tree $T$ and for all vertices $a, b$ of $T$ holds middleVertex $(a, a, b)=$ $a$.
(48) For every tree $T$ and for all vertices $a, b$ of $T$ holds middleVertex $(a, b, a)=$ $a$.
(49) For every tree $T$ and for all vertices $a, b$ of $T$ holds middleVertex $(a, b, b)=$ b.
(50) Let $T$ be a tree, $P_{1}, P_{2}$ be paths of $T$, and $a, b, c$ be vertices of $T$. If $P_{1}=T$.pathBetween $(a, b)$ and $P_{2}=T$.pathBetween $(a, c)$ and $b \notin P_{2}$.vertices() and $c \notin P_{1}$.vertices(), then middleVertex $(a, b, c)=$ $P_{1}\left(\right.$ len maxPrefix $\left.\left(P_{1}, P_{2}\right)\right)$.
(51) Let $T$ be a tree, $P_{1}, P_{2}, P_{3}, P_{4}$ be paths of $T$, and $a, b, c$ be vertices of $T$. Suppose $P_{1}=T$.pathBetween $(a, b)$ and $P_{2}=T$.pathBetween $(a, c)$ and $P_{3}=T$.pathBetween $(b, a)$ and $P_{4}=T$.pathBetween $(b, c)$ and $b \notin P_{2}$.vertices() and $c \notin P_{1} \cdot$ vertices() and $a \notin P_{4}$.vertices(). Then $P_{1}\left(\right.$ len maxPrefix $\left.\left(P_{1}, P_{2}\right)\right)=P_{3}\left(\right.$ len maxPrefix $\left.\left(P_{3}, P_{4}\right)\right)$.
(52) Let $T$ be a tree, $a, b, c$ be vertices of $T$, and $S$ be a non empty set. Suppose that for every set $s$ such that $s \in S$ holds there exists a subtree $t$ of $T$ such that $s=$ the vertices of $t$ but $a, b \in s$ or $a, c \in s$ or $b, c \in s$. Then $\cap S \neq \emptyset$.

## 4. The Helly Property

Let $F$ be a set. We say that $F$ has Helly property if and only if:
(Def. 4) For every non empty set $H$ such that $H \subseteq F$ and for all sets $x, y$ such that $x, y \in H$ holds $x$ meets $y$ holds $\bigcap H \neq \emptyset$.

One can prove the following proposition
(53) Let $T$ be a tree and $X$ be a finite set such that for every set $x$ such that $x \in X$ there exists a subtree $t$ of $T$ such that $x=$ the vertices of $t$. Then $X$ has Helly property.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[6] Gilbert Lee. Trees and graph components. Formalized Mathematics, 13(2):271-277, 2005.
[7] Gilbert Lee. Walks in graphs. Formalized Mathematics, 13(2):253-269, 2005.
[8] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.
[9] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received January 10, 2008


[^0]:    ${ }^{1}$ This work has been partially supported by the NSERC grant OGP 9207.

