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The articles [19], [18], [9], [23], [24], [6], [25], [7], [20], [3], [22], [17], [2], [11], [8],
[1], [5], [10], [14], [15], [4], [16], [21], [12], and [13] provide the terminology and
notation for this paper.

1. Complex Linear Combinations

Let V be a non empty zero structure. An element of Cthe carrier of V is said
to be a C-linear combination of V if:
(Def. 1) There exists a finite subset T of V such that for every element v of V

such that v /∈ T holds it(v) = 0.
Let V be a non empty additive loop structure and let L be an element of

Cthe carrier of V . The support of L yielding a subset of V is defined by:
(Def. 2) The support of L = {v ∈ V : L(v) 6= 0C}.

Let V be a non empty additive loop structure and let L be a C-linear com-
bination of V . One can check that the support of L is finite.
The following proposition is true
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(1) Let V be a non empty additive loop structure, L be a C-linear combina-
tion of V , and v be an element of V . Then L(v) = 0C if and only if v /∈ the
support of L.

Let V be a non empty additive loop structure. The functor ZeroCLCV yields
a C-linear combination of V and is defined by:
(Def. 3) The support of ZeroCLCV = ∅.

Let V be a non empty additive loop structure. Note that the support of
ZeroCLCV is empty.
We now state the proposition

(2) For every non empty additive loop structure V and for every element v
of V holds (ZeroCLCV )(v) = 0C.

Let V be a non empty additive loop structure and let A be a subset of V .
A C-linear combination of V is said to be a C-linear combination of A if:
(Def. 4) The support of it ⊆ A.

Next we state three propositions:

(3) Let V be a non empty additive loop structure, A, B be subsets of V ,
and l be a C-linear combination of A. If A ⊆ B, then l is a C-linear
combination of B.

(4) Let V be a non empty additive loop structure and A be a subset of V .
Then ZeroCLCV is a C-linear combination of A.

(5) Let V be a non empty additive loop structure and l be a C-linear com-
bination of ∅the carrier of V . Then l = ZeroCLCV.
In the sequel i is a natural number.
Let V be a non empty CLS structure, let F be a finite sequence of elements

of the carrier of V , and let f be a function from the carrier of V into C. The
functor f F yields a finite sequence of elements of the carrier of V and is defined
as follows:

(Def. 5) len(f F ) = lenF and for every i such that i ∈ dom(f F ) holds (f F )(i) =
f(Fi) · Fi.
For simplicity, we follow the rules: V denotes a non empty CLS structure,

v, v1, v2, v3 denote vectors of V , A denotes a subset of V , l denotes a C-linear
combination of A, x denotes a set, a, b denote complex numbers, F denotes a
finite sequence of elements of the carrier of V , and f denotes a function from
the carrier of V into C.
The following propositions are true:

(6) If x ∈ domF and v = F (x), then (f F )(x) = f(v) · v.
(7) f ε(the carrier of V ) = ε(the carrier of V ).

(8) f 〈v〉 = 〈f(v) · v〉.
(9) f 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
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(10) f 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.
In the sequel L, L1, L2, L3 are C-linear combinations of V .
Let V be an Abelian add-associative right zeroed right complementable non

empty CLS structure and let L be a C-linear combination of V . The functor∑
L yields an element of V and is defined by the condition (Def. 6).

(Def. 6) There exists a finite sequence F of elements of the carrier of V such that
F is one-to-one and rngF = the support of L and

∑
L =
∑
LF.

One can prove the following propositions:

(11) For every Abelian add-associative right zeroed right complementable non
empty CLS structure V holds

∑
ZeroCLCV = 0V .

(12) Let V be a complex linear space and A be a subset of V . Suppose A 6= ∅.
Then A is linearly closed if and only if for every C-linear combination l of
A holds

∑
l ∈ A.

(13) Let V be an Abelian add-associative right zeroed right complemen-
table non empty CLS structure and l be a C-linear combination of
∅the carrier of V . Then

∑
l = 0V .

(14) Let V be a complex linear space, v be a vector of V , and l be a C-linear
combination of {v}. Then

∑
l = l(v) · v.

(15) Let V be a complex linear space and v1, v2 be vectors of V . Suppose
v1 6= v2. Let l be a C-linear combination of {v1, v2}. Then

∑
l = l(v1) ·

v1 + l(v2) · v2.
(16) Let V be an Abelian add-associative right zeroed right complementable
non empty CLS structure and L be a C-linear combination of V . If the
support of L = ∅, then

∑
L = 0V .

(17) Let V be a complex linear space, L be a C-linear combination of V , and
v be a vector of V . If the support of L = {v}, then

∑
L = L(v) · v.

(18) Let V be a complex linear space, L be a C-linear combination of V , and
v1, v2 be vectors of V . If the support of L = {v1, v2} and v1 6= v2, then∑
L = L(v1) · v1 + L(v2) · v2.

Let V be a non empty additive loop structure and let L1, L2 be C-linear
combinations of V . Let us observe that L1 = L2 if and only if:

(Def. 7) For every element v of V holds L1(v) = L2(v).

Let V be a non empty additive loop structure and let L1, L2 be C-linear
combinations of V . Then L1 + L2 is a C-linear combination of V and it can be
characterized by the condition:

(Def. 8) For every element v of V holds (L1 + L2)(v) = L1(v) + L2(v).

One can prove the following propositions:

(19) The support of L1 + L2 ⊆ (the support of L1) ∪ (the support of L2).
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(20) Suppose L1 is a C-linear combination of A and L2 is a C-linear combi-
nation of A. Then L1 + L2 is a C-linear combination of A.
Let us consider V , A and let L1, L2 be C-linear combinations of A. Then

L1 + L2 is a C-linear combination of A.
The following three propositions are true:

(21) For every non empty additive loop structure V and for all C-linear com-
binations L1, L2 of V holds L1 + L2 = L2 + L1.

(22) L1 + (L2 + L3) = (L1 + L2) + L3.

(23) L+ ZeroCLCV = L.

Let us consider V , a and let us consider L. The functor a · L yielding a
C-linear combination of V is defined as follows:
(Def. 9) For every v holds (a · L)(v) = a · L(v).

One can prove the following propositions:

(24) If a 6= 0C, then the support of a · L = the support of L.
(25) 0C · L = ZeroCLCV.
(26) If L is a C-linear combination of A, then a ·L is a C-linear combination
of A.

(27) (a+ b) · L = a · L+ b · L.
(28) a · (L1 + L2) = a · L1 + a · L2.
(29) a · (b · L) = (a · b) · L.
(30) 1C · L = L.
Let us consider V , L. The functor −L yielding a C-linear combination of V

is defined as follows:

(Def. 10) −L = (−1C) · L.
We now state three propositions:

(31) (−L)(v) = −L(v).
(32) If L1 + L2 = ZeroCLCV, then L2 = −L1.
(33) −−L = L.
Let us consider V and let us consider L1, L2. The functor L1 − L2 yields a

C-linear combination of V and is defined by:
(Def. 11) L1 − L2 = L1 +−L2.

One can prove the following propositions:

(34) (L1 − L2)(v) = L1(v)− L2(v).
(35) The support of L1 − L2 ⊆ (the support of L1) ∪ (the support of L2).
(36) Suppose L1 is a C-linear combination of A and L2 is a C-linear combi-
nation of A. Then L1 − L2 is a C-linear combination of A.

(37) L− L = ZeroCLCV.
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Let us consider V . The functor C-LinCombV yields a set and is defined as
follows:

(Def. 12) x ∈ C-LinCombV iff x is a C-linear combination of V .
Let us consider V . One can verify that C-LinCombV is non empty.
In the sequel e, e1, e2 denote elements of C-LinCombV.
Let us consider V and let us consider e. The functor @e yields a C-linear

combination of V and is defined as follows:

(Def. 13) @e = e.

Let us consider V and let us consider L. The functor @L yielding an element
of C-LinCombV is defined by:

(Def. 14) @L = L.

Let us consider V . The functor C-LCAddV yields a binary operation on
C-LinCombV and is defined by:

(Def. 15) For all e1, e2 holds (C-LCAddV )(e1, e2) = (@e1) + @e2.
Let us consider V . The functor C-LCMultV yields a function from C ×

C-LinCombV into C-LinCombV and is defined as follows:
(Def. 16) For all a, e holds (C-LCMultV )(〈〈a, e〉〉) = a · (@e).

Let us consider V . The functor LC-CLSpaceV yielding a complex linear
space is defined by:

(Def. 17) LC-CLSpaceV = 〈C-LinCombV,@ZeroCLCV,C-LCAddV,C-LCMultV 〉.
Let us consider V . Note that LC-CLSpaceV is strict and non empty.
We now state four propositions:

(38) L1LC-CLSpaceV + L2LC-CLSpaceV = L1 + L2.
(39) a · LLC-CLSpaceV = a · L.
(40) −LLC-CLSpaceV = −L.
(41) L1LC-CLSpaceV − L2LC-CLSpaceV = L1 − L2.
Let us consider V and let us consider A. The functor LC-CLSpaceA yielding

a strict subspace of LC-CLSpaceV is defined as follows:
(Def. 18) The carrier of LC-CLSpaceA = {l}.

2. Preliminaries for Complex Convex Sets

Let V be a complex linear space and let W be a subspace of V . The functor
Up(W ) yields a subset of V and is defined by:

(Def. 19) Up(W ) = the carrier of W .

Let V be a complex linear space and let W be a subspace of V . One can
check that Up(W ) is non empty.
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Let V be a non empty CLS structure and let S be a subset of V . We say
that S is affine if and only if the condition (Def. 20) is satisfied.

(Def. 20) Let x, y be vectors of V and z be a complex number. If there exists a
real number a such that a = z and x, y ∈ S, then (1C − z) · x+ z · y ∈ S.
Let V be a complex linear space. The functor ΩV yields a strict subspace of

V and is defined as follows:

(Def. 21) ΩV = the CLS structure of V .

Let V be a non empty CLS structure. Observe that ΩV is affine and ∅V is
affine.
Let V be a non empty CLS structure. One can check that there exists a

subset of V which is non empty and affine and there exists a subset of V which
is empty and affine.
We now state three propositions:

(42) For every real number a and for every complex number z holds <(a ·z) =
a · <(z).

(43) For every real number a and for every complex number z holds =(a ·z) =
a · =(z).

(44) For every real number a and for every complex number z such that
0 ≤ a ≤ 1 holds |a · z| = a · |z| and |(1C − a) · z| = (1C − a) · |z|.

3. Complex Convex Sets

Let V be a non empty CLS structure, let M be a subset of V , and let r be
an element of C. The functor r ·M yielding a subset of V is defined by:

(Def. 22) r ·M = {r · v; v ranges over elements of V : v ∈M}.
Let V be a non empty CLS structure and let M be a subset of V . We say

that M is convex if and only if the condition (Def. 23) is satisfied.

(Def. 23) Let u, v be vectors of V and z be a complex number. Suppose there
exists a real number r such that z = r and 0 < r < 1 and u, v ∈M. Then
z · u+ (1C − z) · v ∈M.
One can prove the following propositions:

(45) Let V be a complex linear space-like non empty CLS structure, M be
a subset of V , and z be a complex number. If M is convex, then z ·M is
convex.

(46) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure andM , N be subsets of V . IfM is convex and N is convex,
then M +N is convex.

(47) Let V be a complex linear space and M , N be subsets of V . If M is
convex and N is convex, then M −N is convex.
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(48) Let V be a non empty CLS structure and M be a subset of V . Then M
is convex if and only if for every complex number z such that there exists a
real number r such that z = r and 0 < r < 1 holds z ·M+(1C−z)·M ⊆M.

(49) Let V be an Abelian non empty CLS structure and M be a subset of V .
Suppose M is convex. Let z be a complex number. If there exists a real
number r such that z = r and 0 < r < 1, then (1C − z) ·M + z ·M ⊆M.

(50) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure and M , N be subsets of V . Suppose M is convex and N is
convex. Let z be a complex number. If there exists a real number r such
that z = r, then z ·M + (1C − z) ·N is convex.

(51) For every complex linear space-like non empty CLS structure V and for
every subset M of V holds 1C ·M =M.

(52) For every complex linear space V and for every non empty subset M of
V holds 0C ·M = {0V }.

(53) For every add-associative non empty additive loop structure V and for
all subsets M1, M2, M3 of V holds (M1 +M2) +M3 =M1 + (M2 +M3).

(54) Let V be a complex linear space-like non empty CLS structure, M be a
subset of V , and z1, z2 be complex numbers. Then z1 ·(z2 ·M) = (z1 ·z2)·M.

(55) Let V be a complex linear space-like non empty CLS structure, M1,
M2 be subsets of V , and z be a complex number. Then z · (M1 +M2) =
z ·M1 + z ·M2.

(56) Let V be a complex linear space, M be a subset of V , and v be a vector
of V . Then M is convex if and only if v +M is convex.

(57) For every complex linear space V holds Up(0V ) is convex.

(58) For every complex linear space V holds Up(ΩV ) is convex.

(59) For every non empty CLS structure V and for every subsetM of V such
that M = ∅ holds M is convex.

(60) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure, M1, M2 be subsets of V , and z1, z2 be complex numbers.
If M1 is convex and M2 is convex, then z1 ·M1 + z2 ·M2 is convex.

(61) Let V be a complex linear space-like non empty CLS structure, M be
a subset of V , and z1, z2 be complex numbers. Then (z1 + z2) · M ⊆
z1 ·M + z2 ·M.

(62) Let V be a non empty CLS structure, M , N be subsets of V , and z be
a complex number. If M ⊆ N, then z ·M ⊆ z ·N.

(63) For every non empty CLS structure V and for every empty subset M of
V and for every complex number z holds z ·M = ∅.

(64) Let V be a non empty additive loop structure, M be an empty subset
of V , and N be a subset of V . Then M +N = ∅.
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(65) For every right zeroed non empty additive loop structure V and for every
subset M of V holds M + {0V } =M.

(66) Let V be a complex linear space, M be a subset of V , and z1, z2 be
complex numbers. Suppose there exist real numbers r1, r2 such that z1 =
r1 and z2 = r2 and r1 ≥ 0 and r2 ≥ 0 and M is convex. Then z1 ·M + z2 ·
M = (z1 + z2) ·M.

(67) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure, M1, M2, M3 be subsets of V , and z1, z2, z3 be complex
numbers. If M1 is convex and M2 is convex and M3 is convex, then z1 ·
M1 + z2 ·M2 + z3 ·M3 is convex.

(68) Let V be a non empty CLS structure and F be a family of subsets of
V . Suppose that for every subset M of V such that M ∈ F holds M is
convex. Then

⋂
F is convex.

(69) For every non empty CLS structure V and for every subsetM of V such
that M is affine holds M is convex.

Let V be a non empty CLS structure. One can check that there exists a
subset of V which is non empty and convex.
Let V be a non empty CLS structure. Observe that there exists a subset of

V which is empty and convex.
One can prove the following propositions:

(70) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) ≥ r}, then M is convex.

(71) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) > r}, then M is convex.

(72) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) ≤ r}, then M is convex.

(73) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) < r}, then M is convex.

(74) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) ≥ r}, then M is convex.

(75) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) > r}, then M is convex.

(76) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
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If M = {u;u ranges over vectors of V : =((u|v)) ≤ r}, then M is convex.
(77) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) < r}, then M is convex.

(78) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : |(u|v)| ≤ r}, then M is convex.

(79) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : |(u|v)| < r}, then M is convex.

4. Complex Convex Combinations

Let V be a complex linear space and let L be a C-linear combination of V .
We say that L is convex if and only if the condition (Def. 24) is satisfied.

(Def. 24) There exists a finite sequence F of elements of the carrier of V such that
(i) F is one-to-one,
(ii) rngF = the support of L, and
(iii) there exists a finite sequence f of elements of R such that len f = lenF
and
∑
f = 1 and for every natural number n such that n ∈ dom f holds

f(n) = L(F (n)) and f(n) ≥ 0.
We now state several propositions:

(80) Let V be a complex linear space and L be a C-linear combination of V .
If L is convex, then the support of L 6= ∅.

(81) Let V be a complex linear space, L be a C-linear combination of V , and
v be a vector of V . Suppose L is convex and there exists a real number r
such that r = L(v) and r ≤ 0. Then v /∈ the support of L.

(82) For every complex linear space V and for every C-linear combination L
of V such that L is convex holds L 6= ZeroCLCV.

(83) Let V be a complex linear space, v be a vector of V , and L be a C-
linear combination of V . Suppose L is convex and the support of L = {v}.
Then there exists a real number r such that r = L(v) and r = 1 and∑
L = L(v) · v.

(84) Let V be a complex linear space, v1, v2 be vectors of V , and L be
a C-linear combination of V . Suppose L is convex and the support of
L = {v1, v2} and v1 6= v2. Then there exist real numbers r1, r2 such that
r1 = L(v1) and r2 = L(v2) and r1 + r2 = 1 and r1 ≥ 0 and r2 ≥ 0 and∑
L = L(v1) · v1 + L(v2) · v2.
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(85) Let V be a complex linear space, v1, v2, v3 be vectors of V , and L be
a C-linear combination of V . Suppose L is convex and the support of
L = {v1, v2, v3} and v1 6= v2 6= v3 6= v1. Then
(i) there exist real numbers r1, r2, r3 such that r1 = L(v1) and r2 = L(v2)
and r3 = L(v3) and r1 + r2 + r3 = 1 and r1 ≥ 0 and r2 ≥ 0 and r3 ≥ 0,
and

(ii)
∑
L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

(86) Let V be a complex linear space, v be a vector of V , and L be a C-linear
combination of {v}. Suppose L is convex. Then there exists a real number
r such that r = L(v) and r = 1 and

∑
L = L(v) · v.

(87) Let V be a complex linear space, v1, v2 be vectors of V , and L be a
C-linear combination of {v1, v2}. Suppose v1 6= v2 and L is convex. Then
there exist real numbers r1, r2 such that r1 = L(v1) and r2 = L(v2) and
r1 ≥ 0 and r2 ≥ 0 and

∑
L = L(v1) · v1 + L(v2) · v2.

(88) Let V be a complex linear space, v1, v2, v3 be vectors of V , and L be a
C-linear combination of {v1, v2, v3}. Suppose v1 6= v2 6= v3 6= v1 and L is
convex. Then
(i) there exist real numbers r1, r2, r3 such that r1 = L(v1) and r2 = L(v2)
and r3 = L(v3) and r1 + r2 + r3 = 1 and r1 ≥ 0 and r2 ≥ 0 and r3 ≥ 0,
and

(ii)
∑
L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

5. Complex Convex Hull

Let V be a non empty CLS structure and let M be a subset of V . The
functor Convex-FamilyM yielding a family of subsets of V is defined by:

(Def. 25) For every subset N of V holds N ∈ Convex-FamilyM iff N is convex
and M ⊆ N.
Let V be a non empty CLS structure and let M be a subset of V . The

functor convM yielding a convex subset of V is defined as follows:

(Def. 26) convM =
⋂
Convex-FamilyM.

The following proposition is true

(89) Let V be a non empty CLS structure, M be a subset of V , and N be a
convex subset of V . If M ⊆ N, then convM ⊆ N.
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