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Summary. In this paper, we defined the quadratic residue and proved its
fundamental properties on the base of some useful theorems. Then we defined
the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss
Lemma and Law of Quadratic Reciprocity are proven.
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The papers [20], [10], [9], [11], [4], [1], [2], [17], [8], [19], [7], [16], [13], [21], [22],
[5], [18], [3], [15], [6], and [23] provide the terminology and notation for this
paper.
For simplicity, we adopt the following convention: i, i1, i2, i3, j, a, b, x

denote integers, d, e, n denote natural numbers, f , f ′ denote finite sequences of
elements of Z, g, g1, g2 denote finite sequences of elements of R, and p denotes
a prime number.
We now state two propositions:

(1) If i1 | i2 and i1 | i3, then i1 | i2 − i3.
(2) If i | a and i | a− b, then i | b.
Let us consider f . The functor PZ(f) yields a function from Z into Z and is

defined by the condition (Def. 1).
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(Def. 1) Let x be an element of Z. Then there exists a finite sequence f ′ of
elements of Z such that len f ′ = len f and for every d such that d ∈ dom f ′
holds f ′(d) = f(d) · xd−′1 and (PZ(f))(x) =

∑
f ′.

Let f be a finite sequence of elements of Z and let x be an integer. Observe
that (PZ(f))(x) is integer.
We now state two propositions:

(3) If len f = 1, then PZ(f) = Z 7−→ f(1).
(4) If len f = 1, then for every element x of Z holds (PZ(f))(x) = f(1).

In the sequel f ′ denotes a finite sequence of elements of R.
Next we state three propositions:

(5) Let given g, g1, g2. Suppose len g = n+1 and len g1 = len g and len g2 =
len g and for every d such that d ∈ dom g holds g(d) = g1(d)−g2(d). Then
there exists f ′ such that len f ′ = len g − 1 and for every d such that d ∈
dom f ′ holds f ′(d) = g1(d)−g2(d+1) and

∑
g = ((

∑
f ′)+g1(n+1))−g2(1).

(6) Suppose len f = n + 2. Let a be an integer. Then there exists a finite
sequence f ′ of elements of Z and there exists an integer r such that len f ′ =
n+1 and for every element x of Z holds (PZ(f))(x) = (x−a)·(PZ(f ′))(x)+r
and f(n+ 2) = f ′(n+ 1).

(7) If p | i · j, then p | i or p | j.
In the sequel f ′, g are finite sequences of elements of Z.
The following proposition is true

(8) Let given f . Suppose len f = n+1 and p > 2 and p - f(n+1). Let given f ′.
Suppose for every d such that d ∈ dom f ′ holds (PZ(f))(f ′(d)) mod p =
0 and for all d, e such that d, e ∈ dom f ′ and d 6= e holds f ′(d) 6≡
f ′(e) (mod p). Then len f ′ ≤ n.
Let a be an integer and letm be a natural number. We say that a is quadratic

residue mod m if and only if:

(Def. 2) There exists an integer x such that (x2 − a) mod m = 0.
In the sequel b, m denote natural numbers.
We now state four propositions:

(9) If a gcdm = 1, then a2 is quadratic residue mod m.

(10) 1 is quadratic residue mod 2.

(11) If i gcdm = 1 and i is quadratic residue mod m and i ≡ j (modm), then
j is quadratic residue mod m.

(12) If i | j, then i gcd j = |i|.
Let k be an integer and let a be a natural number. One can verify that ka

is integer.
One can prove the following propositions:
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(13) For all integers i, j, m such that i mod m = j mod m holds in mod m =
jn mod m.

(14) If a gcd p = 1 and (x2 − a) mod p = 0, then x and p are relative prime.
(15) Suppose p > 2 and a gcd p = 1 and a is quadratic residue mod p. Then
there exist integers x, y such that (x2−a) mod p = 0 and (y2−a) mod p = 0
and x 6≡ y (mod p).
Let f be a finite sequence of elements of N and let us consider d. One can

check that f(d) is natural.
The following propositions are true:

(16) Suppose p > 2. Then there exists a finite sequence f of elements of N
such that
(i) len f = (p−′ 1)÷ 2,
(ii) for every d such that d ∈ dom f holds gcd(f(d), p) = 1,
(iii) for every d such that d ∈ dom f holds f(d) is quadratic residue mod p,
and

(iv) for all d, e such that d, e ∈ dom f and d 6= e holds f(d) 6≡ f(e) (mod p).
(17) If p > 2 and a gcd p = 1 and a is quadratic residue mod p, then
a(p−

′1)÷2 mod p = 1.

(18) If p > 2 and b gcd p = 1 and b is not quadratic residue mod p, then
b(p−

′1)÷2 mod p = p− 1.
(19) If p > 2 and a gcd p = 1 and a is not quadratic residue mod p, then
a(p−

′1)÷2 mod p = p− 1.
(20) If p > 2 and a gcd p = 1 and a is quadratic residue mod p, then
(a(p−

′1)÷2 − 1) mod p = 0.
(21) If p > 2 and a gcd p = 1 and a is not quadratic residue mod p, then
(a(p−

′1)÷2 + 1) mod p = 0.

In the sequel b is an integer.
We now state three propositions:

(22) Suppose p > 2 and a gcd p = 1 and b gcd p = 1 and a is quadratic residue
mod p and b is quadratic residue mod p. Then a · b is quadratic residue
mod p.

(23) Suppose p > 2 and a gcd p = 1 and b gcd p = 1 and a is quadratic residue
mod p and b is not quadratic residue mod p. Then a · b is not quadratic
residue mod p.

(24) Suppose p > 2 and a gcd p = 1 and b gcd p = 1 and a is not quadratic
residue mod p and b is not quadratic residue mod p. Then a ·b is quadratic
residue mod p.

Let a be an integer and let p be a prime number. The functor
(
a
p

)
yielding

an integer is defined by:
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(Def. 3)
(
a
p

)
=

{
1, if a is quadratic residue mod p,
−1, otherwise.

One can prove the following propositions:

(25)
(
a
p

)
= 1 or

(
a
p

)
= −1.

(26) If a gcd p = 1, then
(
a2

p

)
= 1.

(27)
(
1
p

)
= 1.

(28) If p > 2 and a gcd p = 1, then
(
a
p

)
≡ a(p−′1)÷2 (mod p).

(29) If p > 2 and a gcd p = 1 and a ≡ b (mod p), then
(
a
p

)
=
(
b
p

)
.

(30) If p > 2 and a gcd p = 1 and b gcd p = 1, then
(
a·b
p

)
=
(
a
p

)
·
(
b
p

)
.

(31) If for every d such that d ∈ dom f ′ holds f ′(d) = 1 or f ′(d) = −1, then∏
f ′ = 1 or

∏
f ′ = −1.

In the sequel m denotes an integer.
One can prove the following propositions:

(32) For all g, f ′ such that len g = len f ′ and for every d such that d ∈ dom g
holds g(d) ≡ f ′(d) (modm) holds

∏
g ≡
∏
f ′ (modm).

(33) For all g, f ′ such that len g = len f ′ and for every d such that d ∈ dom g
holds g(d) ≡ −f ′(d) (modm) holds

∏
g ≡ (−1)len g ·

∏
f ′ (modm).

In the sequel f denotes a finite sequence of elements of N.
Next we state several propositions:

(34) Suppose p > 2 and for every d such that d ∈ dom f holds gcd(f(d), p) =
1. Then there exists a finite sequence f ′ of elements of Z such that len f ′ =
len f and for every d such that d ∈ dom f ′ holds f ′(d) =

(
f(d)
p

)
and(∏

f

p

)
=
∏
f ′.

(35) If p > 2 and gcd(d, p) = 1 and gcd(e, p) = 1, then
(
d2·e
p

)
=
(
e
p

)
.

(36) If p > 2, then
(
−1
p

)
= (−1)(p−

′1)÷2.

(37) If p > 2 and p mod 4 = 1, then −1 is quadratic residue mod p.
(38) If p > 2 and p mod 4 = 3, then −1 is not quadratic residue mod p.
(39) Let D be a non empty set, g be a finite sequence of elements of D, and
i, j be natural numbers. Then g is one-to-one if and only if Swap(g, i, j)
is one-to-one.

(40) Let g be a finite sequence of elements of N. Suppose len g = n and
for every d such that d ∈ dom g holds g(d) > 0 and g(d) ≤ n and g is
one-to-one. Then rng g = Seg n.

In the sequel a, m are natural numbers.
Next we state several propositions:
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(41) Let g be a finite sequence of elements of N. Suppose p > 2
and gcd(a, p) = 1 and g = a · idseq((p −′ 1) ÷ 2) and m =

{k ∈ N: k ∈ rng(g mod p) ∧ k > p2} . Then
(
a
p

)
= (−1)m.

(42) If p > 2, then
(
2
p

)
= (−1)(p

2−′1)÷8.

(43) If p > 2 and if p mod 8 = 1 or p mod 8 = 7, then 2 is quadratic residue
mod p.

(44) If p > 2 and if p mod 8 = 3 or p mod 8 = 5, then 2 is not quadratic
residue mod p.

(45) For all natural numbers a, b such that a mod 2 = b mod 2 holds (−1)a =
(−1)b.
In the sequel g, g, h, k denote finite sequences of elements of R.
Next we state two propositions:

(46) If len g = lenh and len g = len k, then g a g − h a k = (g − h) a (g − k).
(47) For every finite sequence g of elements of R and for every real number
m holds

∑
(len g 7→ m− g) = len g ·m−

∑
g.

In the sequel X denotes a finite set and F denotes a finite sequence of
elements of 2X .
Let us consider X, F . Then F is a cardinal yielding finite sequence of ele-

ments of N.
The following proposition is true

(48) Let g be a finite sequence of elements of 2X . Suppose len g = n and for
all d, e such that d, e ∈ dom g and d 6= e holds g(d) misses g(e). Then⋃
rng g =

∑
g .

In the sequel q is a prime number.
The following three propositions are true:

(49) If p > 2 and q > 2 and p 6= q, then
(
p
q

)
·
(
q
p

)
= (−1)((p−

′1)÷2)·((q−′1)÷2).

(50) If p > 2 and q > 2 and p 6= q and p mod 4 = 3 and q mod 4 = 3, then(
p
q

)
= −
(
q
p

)
.

(51) If p > 2 and q > 2 and p 6= q and p mod 4 = 1 or q mod 4 = 1, then(
p
q

)
=
(
q
p

)
.
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