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Summary. In this article we will first investigate the elementary pro-
perties of BCI-algebras with condition (S), see [8]. And then we will discuss
the three classes of algebras: commutative, positive-implicative and implicative
BCK-algebras with condition (S).
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The papers [5], [12], [3], [1], [6], [2], [10], [9], [4], [11], and [7] provide the notation
and terminology for this paper.
We introduce BCI stuctures with complements which are extensions of BCI

structure with 0 and zero structure and are systems
〈 a carrier, an external complement, an internal complement, a zero 〉,

where the carrier is a set, the external complement and the internal complement
are binary operations on the carrier, and the zero is an element of the carrier.
Let us mention that there exists a BCI structure with complements which

is non empty and strict.
Let A be a BCI structure with complements and let x, y be elements of A.

The functor x · y yields an element of A and is defined as follows:
(Def. 1) x · y = (the external complement of A)(x, y).
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Let B be a non empty BCI structure with complements. We say that B

satisfies condition (S) if and only if:

(Def. 2) For all elements x, y, z of B holds x \ y \ z = x \ y · z.
The BCI structure the BCI S-example with complements is defined by:

(Def. 3) The BCI S-example = 〈1, op2, op2, op0〉.
Let us observe that the BCI S-example is strict, non empty, and trivial.
Let us observe that the BCI S-example is B, C, I, BCI-4, and BCK-5 and

satisfies condition (S).
Let us note that there exists a non empty BCI structure with complements

which is strict, B, C, I, and BCI-4 and satisfies condition (S).
A BCI-algebra with condition (S) is B C I BCI-4 non empty BCI structure

with complements satisfying condition (S).
In the sequel X is a non empty BCI structure with complements, x, d are

elements of X, and n is an element of N.
Let X be a BCI-algebra with condition (S) and let x, y be elements of X.

The functor ConditionS(x, y) yields a non empty subset of X and is defined as
follows:

(Def. 4) ConditionS(x, y) = {t ∈ X: t \ x ≤ y}.
We now state four propositions:

(1) Let X be a BCI-algebra with condition (S) and x, y, u, v be elements of
X. If u ∈ ConditionS(x, y) and v ≤ u, then v ∈ ConditionS(x, y).

(2) Let X be a BCI-algebra with condition (S) and x, y be elements of X.
Then there exists an element a of ConditionS(x, y) such that for every
element z of ConditionS(x, y) holds z ≤ a.

(3) X is a BCI-algebra and for all elements x, y of X holds x · y \ x ≤ y and
for every element t of X such that t \ x ≤ y holds t ≤ x · y if and only if X
is a BCI-algebra with condition (S).

(4) Let X be a BCI-algebra with condition (S) and x, y be elements of X.
Then there exists an element a of ConditionS(x, y) such that for every
element z of ConditionS(x, y) holds z ≤ a.
Let X be a p-semisimple BCI-algebra. The adjoint p-group of X yields a

strict Abelian group and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of the adjoint p-group of X = the carrier of X,
(ii) for all elements x, y of X holds (the addition of the adjoint p-group of

X)(x, y) = x \ (0X \ y), and
(iii) 0the adjoint p-group of X = 0X.

We now state a number of propositions:

(5) Let X be a BCI-algebra. Then X is p-semisimple if and only if for all
elements x, y of X such that x \ y = 0X holds x = y.
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(6) Let X be a BCI-algebra with condition (S). Suppose X is p-semisimple.
Let x, y be elements of X. Then x · y = x \ (0X \ y).

(7) For every BCI-algebra X with condition (S) and for all elements x, y of
X holds x · y = y · x.

(8) Let X be a BCI-algebra with condition (S) and x, y, z be elements of X.
If x ≤ y, then x · z ≤ y · z and z · x ≤ z · y.

(9) For every BCI-algebra X with condition (S) and for every element x of
X holds 0X · x = x and x · 0X = x.

(10) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds (x · y) · z = x · (y · z).

(11) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds x · y · z = x · z · y.

(12) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds x \ y \ z = x \ y · z.

(13) For every BCI-algebra X with condition (S) and for all elements x, y of
X holds y ≤ x · (y \ x).

(14) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds x · z \ y · z ≤ x \ y.

(15) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds x \ y ≤ z iff x ≤ y · z.

(16) For every BCI-algebra X with condition (S) and for all elements x, y, z
of X holds x \ y ≤ (x \ z) · (z \ y).
Let X be a BCI-algebra with condition (S). One can check that the external

complement of X is commutative and associative.
Next we state three propositions:

(17) For every BCI-algebra X with condition (S) holds 0X is a unity w.r.t. the
external complement of X.

(18) For every BCI-algebra X with condition (S) holds
1the external complement of X = 0X.

(19) For every BCI-algebra X with condition (S) holds the external comple-
ment of X has a unity.

Let X be a BCI-algebra with condition (S). The functor powerX yielding a
function from (the carrier of X)× N into the carrier of X is defined as follows:
(Def. 6) For every element h of X holds powerX(h, 0) = 0X and for every n holds

powerX(h, n+ 1) = powerX(h, n) · h.
Let X be a BCI-algebra with condition (S), let x be an element of X, and

let us consider n. The functor xn yields an element of X and is defined by:

(Def. 7) xn = powerX(x, n).

The following propositions are true:
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(20) For every BCI-algebra X with condition (S) and for every element x of
X holds x0 = 0X.

(21) For every BCI-algebra X with condition (S) and for every element x of
X holds xn+1 = xn · x.

(22) For every BCI-algebra X with condition (S) and for every element x of
X holds x1 = x.

(23) For every BCI-algebra X with condition (S) and for every element x of
X holds x2 = x · x.

(24) For every BCI-algebra X with condition (S) and for every element x of
X holds x3 = x · x · x.

(25) For every BCI-algebra X with condition (S) holds (0X)
2 = 0X.

(26) For every BCI-algebra X with condition (S) holds (0X)
n = 0X.

(27) For every BCI-algebra X with condition (S) and for all elements x, a of
X holds x \ a \ a \ a = x \ a3.

(28) For every BCI-algebra X with condition (S) and for all elements x, a of
X holds (x \ a)n = x \ an.
Let X be a non empty BCI structure with complements and let F be a finite

sequence of elements of the carrier of X. The functor ProductS(F ) yielding an
element of X is defined by:

(Def. 8) ProductS(F ) = the external complement of X� F.
One can prove the following propositions:

(29) The external complement of X� 〈d〉 = d.
(30) Let X be a BCI-algebra with condition (S) and F1, F2 be finite sequences
of elements of the carrier of X. Then ProductS(F1 a F2) = ProductS(F1) ·
ProductS(F2).

(31) Let X be a BCI-algebra with condition (S), F be a finite sequence of
elements of the carrier of X, and a be an element of X. Then ProductS(F a

〈a〉) = ProductS(F ) · a.
(32) Let X be a BCI-algebra with condition (S), F be a finite sequence of
elements of the carrier of X, and a be an element of X. Then ProductS(〈a〉a
F ) = a · ProductS(F ).

(33) For every BCI-algebra X with condition (S) and for all elements a1, a2
of X holds ProductS(〈a1, a2〉) = a1 · a2.

(34) For every BCI-algebra X with condition (S) and for all elements a1, a2,
a3 of X holds ProductS(〈a1, a2, a3〉) = a1 · a2 · a3.

(35) For every BCI-algebra X with condition (S) and for all elements x, a1,
a2 of X holds x \ a1 \ a2 = x \ ProductS(〈a1, a2〉).

(36) For every BCI-algebra X with condition (S) and for all elements x, a1,
a2, a3 of X holds x \ a1 \ a2 \ a3 = x \ ProductS(〈a1, a2, a3〉).
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(37) Let X be a BCI-algebra with condition (S), a, b be elements of
AtomSetX, and m1 be an element of X. Suppose that for every element
x of BranchV a holds x ≤ m1. Then there exists an element m2 of X such
that for every element y of BranchV b holds y ≤ m2.
Let us observe that there exists a BCI-algebra with condition (S) which is

strict and BCK-5.
A BCK-algebra with condition (S) is BCK-5 BCI-algebra with condition (S).
We now state four propositions:

(38) For every BCK-algebra X with condition (S) and for all elements x, y of
X holds x ≤ x · y and y ≤ x · y.

(39) For every BCK-algebra X with condition (S) and for all elements x, y,
z of X holds x · y \ y · z \ z · x = 0X.

(40) For every BCK-algebra X with condition (S) and for all elements x, y of
X holds (x \ y) · (y \ x) ≤ x · y.

(41) For every BCK-algebra X with condition (S) and for every element x of
X holds (x \ 0X) · (0X \ x) = x.
Let B be a BCK-algebra with condition (S). We say that B is commutative

if and only if:

(Def. 9) For all elements x, y of B holds x \ (x \ y) = y \ (y \ x).
One can verify that there exists a BCK-algebra with condition (S) which is

commutative.
Next we state two propositions:

(42) Let X be a non empty BCI structure with complements. Then X is a
commutative BCK-algebra with condition (S) if and only if for all elements
x, y, z of X holds x \ (0X \ y) = x and (x \ z) \ (x \ y) = y \ z \ (y \ x) and
x \ y \ z = x \ y · z.

(43) Let X be a commutative BCK-algebra with condition (S) and a be an
element of X. If a is greatest, then for all elements x, y of X holds x · y =
a \ (a \ x \ y).
Let X be a BCI-algebra and let a be an element of X. The initial section of

a yields a non empty subset of X and is defined by:

(Def. 10) The initial section of a = {t ∈ X: t ≤ a}.
The following proposition is true

(44) Let X be a commutative BCK-algebra with condition (S) and a, b, c be
elements of X. Suppose ConditionS(a, b) ⊆ the initial section of c. Let x
be an element of ConditionS(a, b). Then x ≤ c \ (c \ a \ b).
Let B be a BCK-algebra with condition (S). We say that B is positive-

implicative if and only if:

(Def. 11) For all elements x, y of B holds x \ y \ y = x \ y.
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Let us note that there exists a BCK-algebra with condition (S) which is
positive-implicative.
The following propositions are true:

(45) Let X be a BCK-algebra with condition (S). Then X is positive-
implicative if and only if for every element x of X holds x · x = x.

(46) Let X be a BCK-algebra with condition (S). Then X is positive-
implicative if and only if for all elements x, y of X such that x ≤ y holds
x · y = y.

(47) Let X be a BCK-algebra with condition (S). Then X is positive-
implicative if and only if for all elements x, y, z of X holds x · y \ z =
(x \ z) · (y \ z).

(48) Let X be a BCK-algebra with condition (S). Then X is positive-
implicative if and only if for all elements x, y of X holds x · y = x · (y \ x).

(49) Let X be a positive-implicative BCK-algebra with condition (S) and x,
y be elements of X. Then x = (x \ y) · (x \ (x \ y)).
Let B be a non empty BCI structure with complements. We say that B is

SB-1 if and only if:

(Def. 12) For every element x of B holds x · x = x.
We say that B is SB-2 if and only if:

(Def. 13) For all elements x, y of B holds x · y = y · x.
We say that B is SB-4 if and only if:

(Def. 14) For all elements x, y of B holds (x \ y) · y = x · y.
Let us note that the BCI S-example is SB-1, SB-2, SB-4, and I and satisfies

condition (S).
Let us note that there exists a non empty BCI structure with complements

which is strict, SB-1, SB-2, SB-4, and I and satisfies condition (S).
A semi-Brouwerian algebra is SB-1 SB-2 SB-4 I non empty BCI structure

with complements satisfying condition (S).
One can prove the following proposition

(50) Let X be a non empty BCI structure with complements. Then X is a
positive-implicative BCK-algebra with condition (S) if and only if X is a
semi-Brouwerian algebra.

Let B be a BCK-algebra with condition (S). We say that B is implicative
if and only if:

(Def. 15) For all elements x, y of B holds x \ (y \ x) = x.
Let us observe that there exists a BCK-algebra with condition (S) which is

implicative.
Next we state two propositions:
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(51) Let X be a BCK-algebra with condition (S). Then X is implicative if and
only if X is commutative and positive-implicative.

(52) Let X be a BCK-algebra with condition (S). Then X is implicative if and
only if for all elements x, y, z of X holds x\ (y \z) = (x\y \z) · (z \ (z \x)).
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