Basic Properties of the Rank of Matrices over a Field

Karol Pąk Institute of Computer Science University of Białystok Poland

Summary. In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field.

I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the concept of the rank of a $m \times n$ matrix A by the condition: A has the rank r if and only if, there is a $r \times r$ submatrix of A with a non-zero determinant, and for every $k \times k$ submatrix of A with a non-zero determinant we have $k \leq r$.

At the end, I prove that the rank defined by the size of the biggest submatrix with a non-zero determinant of a matrix A, is the same as the maximal number of linearly independent rows of A.

MML identifier: MATRIX13, version: 7.8.05 4.87.985

The articles [27], [10], [37], [23], [1], [2], [12], [38], [39], [7], [8], [3], [4], [24], [36], [31], [15], [6], [13], [28], [14], [41], [30], [19], [34], [42], [9], [22], [16], [11], [25], [40], [18], [20], [26], [33], [21], [17], [35], [32], [29], [43], and [5] provide the terminology and notation for this paper.

1. TRIANGULAR MATRICES

For simplicity, we use the following convention: x, X, Y are sets, D is a non empty set, i, j, k, m, n, m', n' are elements of $\mathbb{N}, i_0, j_0, n_0, m_0$ are non zero elements of \mathbb{N}, K is a field, a, b are elements of K, p is a finite sequence of elements of K, and M is a matrix over K of dimension n.

Next we state a number of propositions:

C 2007 University of Białystok ISSN 1426-2630

- (1) For every matrix A over D of dimension $n \times m$ holds if n = 0, then m = 0 iff len A = n and width A = m.
- (2) The following statements are equivalent
- (i) M is a lower triangular matrix over K of dimension n,
- (ii) M^{T} is an upper triangular matrix over K of dimension n.
- (3) The diagonal of M = the diagonal of M^{T} .
- (4) Let p_1 be an element of the permutations of *n*-element set. Suppose $p_1 \neq \text{idseq}(n)$. Then there exists *i* such that $i \in \text{Seg } n$ and $p_1(i) > i$ and there exists *j* such that $j \in \text{Seg } n$ and $p_1(j) < j$.
- (5) Let M be a matrix over K of dimension n and p_1 be an element of the permutations of n-element set. Suppose that
- (i) $p_1 \neq \text{idseq}(n)$, and
- (ii) M is a lower triangular matrix over K of dimension n or an upper triangular matrix over K of dimension n.
 Then (the product on paths of M)(p₁) = 0_K.
- (6) Let M be a matrix over K of dimension n and I be an element of the permutations of n-element set. If I = idseq(n), then the diagonal of M = I-Path M.
- (7) Let M be an upper triangular matrix over K of dimension n. Then Det M = (the multiplication of $K) \circledast ($ the diagonal of M).
- (8) Let M be a lower triangular matrix over K of dimension n. Then Det M = (the multiplication of $K) \otimes ($ the diagonal of M).
- (9) For every finite set X and for every n holds $\overline{\{Y; Y \text{ ranges over subsets of } X: \text{ card } Y = n\}} = \binom{\operatorname{card} X}{n}.$
- (10) $\overline{2\text{Set Seg }n} = \binom{n}{2}.$
- (11) Let R be an element of the permutations of n-element set. If R = Rev(idseq(n)), then R is even iff $\binom{n}{2} \mod 2 = 0$.
- (12) Let M be a matrix over K of dimension n and R be a permutation of Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $i + j \leq n$ holds $M_{i,j} = 0_K$. Then $M \cdot R$ is an upper triangular matrix over K of dimension n.
- (13) Let M be a matrix over K of dimension n and R be a permutation of Seg n. Suppose R = Rev(idseq(n)) and for all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and i + j > n + 1 holds $M_{i,j} = 0_K$. Then $M \cdot R$ is a lower triangular matrix over K of dimension n.
- (14) Let M be a matrix over K of dimension n and R be an element of the permutations of n-element set. Suppose that
 - (i) $R = \operatorname{Rev}(\operatorname{idseq}(n))$, and
 - (ii) for all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $i+j \leq n$ holds $M_{i,j} = 0_K$ or for all i, j such that $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and i+j > n+1

200

holds $M_{i,j} = 0_K$. Then Det $M = (-1)^{\operatorname{sgn}(R)}$ (the multiplication of $K \odot (R \operatorname{-Path} M)$).

- (15) Let M be a matrix over K of dimension n and M_1 , M_2 be upper triangular matrices over K of dimension n. Suppose $M = M_1 \cdot M_2$. Then
 - (i) M is an upper triangular matrix over K of dimension n, and
 - (ii) the diagonal of M =(the diagonal of M_1) (the diagonal of M_2).
- (16) Let M be a matrix over K of dimension n and M_1, M_2 be lower triangular matrices over K of dimension n. Suppose $M = M_1 \cdot M_2$. Then
 - (i) M is a lower triangular matrix over K of dimension n, and
 - (ii) the diagonal of M = (the diagonal of $M_1) \bullet ($ the diagonal of $M_2).$

2. The Rank of Matrices

Let D be a non empty set, let M be a matrix over D, let n, m be natural numbers, let n_1 be an element of \mathbb{N}^n , and let m_1 be an element of \mathbb{N}^m . The functor Segm (M, n_1, m_1) yielding a matrix over D of dimension $n \times m$ is defined as follows:

(Def. 1) For all natural numbers i, j such that $\langle i, j \rangle \in$ the indices of $\operatorname{Segm}(M, n_1, m_1)$ holds $(\operatorname{Segm}(M, n_1, m_1))_{i,j} = M_{n_1(i), m_1(j)}$.

For simplicity, we follow the rules: A denotes a matrix over D, A' denotes a matrix over D of dimension $n' \times m'$, M' denotes a matrix over K of dimension $n' \times m'$, n_1 , n_2 , n_3 denote elements of \mathbb{N}^n , m_1 , m_2 denote elements of \mathbb{N}^m , and M denotes a matrix over K.

Next we state a number of propositions:

- (17) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of A, then $\langle i, j \rangle \in$ the indices of $\operatorname{Segm}(A, n_1, m_1)$ iff $\langle n_1(i), m_1(j) \rangle \in$ the indices of A.
- (18) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of A and n = 0 iff m = 0, then $(\operatorname{Segm}(A, n_1, m_1))^{\mathrm{T}} = \operatorname{Segm}(A^{\mathrm{T}}, m_1, n_1).$
- (19) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of A and if m = 0, then n = 0, then $\operatorname{Segm}(A, n_1, m_1) = (\operatorname{Segm}(A^{\mathrm{T}}, m_1, n_1))^{\mathrm{T}}$.
- (20) For every matrix A over D of dimension 1 holds $A = \langle \langle A_{1,1} \rangle \rangle$.
- (21) If n = 1 and m = 1, then Segm $(A, n_1, m_1) = \langle \langle A_{n_1(1), m_1(1)} \rangle \rangle$.
- (22) For every matrix A over D of dimension 2 holds $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$.
- (23) If n = 2 and m = 2, then Segm $(A, n_1, m_1) = \begin{pmatrix} A_{n_1(1),m_1(1)} & A_{n_1(1),m_1(2)} \\ A_{n_1(2),m_1(1)} & A_{n_1(2),m_1(2)} \end{pmatrix}$.
- (24) If $i \in \text{Seg } n$ and $\operatorname{rng} m_1 \subseteq \text{Seg width } A$, then $\operatorname{Line}(\operatorname{Segm}(A, n_1, m_1), i) = \operatorname{Line}(A, n_1(i)) \cdot m_1$.

- (25) If $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $n_1(i) = n_1(j)$, then Line(Segm(A, n_1, m_1), i) = Line(Segm(A, n_1, m_1), j).
- (26) If $i \in \text{Seg } n$ and $j \in \text{Seg } n$ and $n_1(i) = n_1(j)$ and $i \neq j$, then $\text{Det Segm}(M, n_1, n_2) = 0_K$.
- (27) If n_1 is not one-to-one, then Det Segm $(M, n_1, n_2) = 0_K$.
- (28) If $j \in \operatorname{Seg} m$ and $\operatorname{rng} n_1 \subseteq \operatorname{Seg} \operatorname{len} A$, then $(\operatorname{Segm}(A, n_1, m_1))_{\Box, j} = A_{\Box, m_1(j)} \cdot n_1$.
- (29) If $i \in \operatorname{Seg} m$ and $j \in \operatorname{Seg} m$ and $m_1(i) = m_1(j)$, then $(\operatorname{Segm}(A, n_1, m_1))_{\Box,i} = (\operatorname{Segm}(A, n_1, m_1))_{\Box,j}.$
- (30) If $i \in \text{Seg } m$ and $j \in \text{Seg } m$ and $m_1(i) = m_1(j)$ and $i \neq j$, then $\text{Det Segm}(M, m_2, m_1) = 0_K$.
- (31) If m_1 is not one-to-one, then Det Segm $(M, m_2, m_1) = 0_K$.
- (32) Let n_1 , n_2 be elements of \mathbb{N}^n . Suppose n_1 is one-to-one and n_2 is one-to-one and $\operatorname{rng} n_1 = \operatorname{rng} n_2$. Then there exists a permutation p_1 of $\operatorname{Seg} n$ such that $n_2 = n_1 \cdot p_1$.
- (33) For every function f from Seg n into Seg n such that $n_2 = n_1 \cdot f$ holds $\text{Segm}(A, n_2, m_1) = \text{Segm}(A, n_1, m_1) \cdot f$.
- (34) For every function f from Seg m into Seg m such that $m_2 = m_1 \cdot f$ holds $(\text{Segm}(A, n_1, m_2))^{\text{T}} = (\text{Segm}(A, n_1, m_1))^{\text{T}} \cdot f.$
- (35) Let p_1 be an element of the permutations of *n*-element set. If $n_2 = n_3 \cdot p_1$, then $\text{Det} \operatorname{Segm}(M, n_2, n_1) = (-1)^{\operatorname{sgn}(p_1)} \operatorname{Det} \operatorname{Segm}(M, n_3, n_1)$ and $\operatorname{Det} \operatorname{Segm}(M, n_1, n_2) = (-1)^{\operatorname{sgn}(p_1)} \operatorname{Det} \operatorname{Segm}(M, n_1, n_3).$
- (36) For all elements n_1 , n_2 , n'_1 , n'_2 of \mathbb{N}^n such that $\operatorname{rng} n_1 = \operatorname{rng} n'_1$ and $\operatorname{rng} n_2 = \operatorname{rng} n'_2$ holds $\operatorname{Det} \operatorname{Segm}(M, n_1, n_2) = \operatorname{Det} \operatorname{Segm}(M, n'_1, n'_2)$ or $\operatorname{Det} \operatorname{Segm}(M, n_1, n_2) = -\operatorname{Det} \operatorname{Segm}(M, n'_1, n'_2).$
- (37) Let F, F_1 be finite sequences of elements of D and given n_1, m_1 . Suppose len F = width A' and $F_1 = F \cdot m_1$ and $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of A'. Let given i, j. If $n_1^{-1}(\{j\}) = \{i\}$, then $\operatorname{RLine}(\operatorname{Segm}(A', n_1, m_1), i, F_1) = \operatorname{Segm}(\operatorname{RLine}(A', j, F), n_1, m_1)$.
- (38) Let F be a finite sequence of elements of D and given i, n_1 . If $i \notin \operatorname{rng} n_1$ and $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of A', then $\operatorname{Segm}(A', n_1, m_1) = \operatorname{Segm}(\operatorname{RLine}(A', i, F), n_1, m_1)$.
- (39) If $i \in \text{Seg } n'$ and $i \in \text{rng } n_1$ and $[\text{rng } n_1, \text{rng } m_1] \subseteq$ the indices of A', then there exists n_2 such that $\text{rng } n_2 = (\text{rng } n_1 \setminus \{i\}) \cup \{j\}$ and $\text{Segm}(\text{RLine}(A', i, \text{Line}(A', j)), n_1, m_1) = \text{Segm}(A', n_2, m_1).$
- (40) For every finite sequence F of elements of D such that $i \notin \text{Seglen } A'$ holds RLine(A', i, F) = A'.

Let n, m be natural numbers, let K be a field, let M be a matrix over K of dimension $n \times m$, and let a be an element of K. Then $a \cdot M$ is a matrix over

202

K of dimension $n \times m$.

We now state two propositions:

- (41) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of M, then $a \cdot \operatorname{Segm}(M, n_1, m_1) = \operatorname{Segm}(a \cdot M, n_1, m_1)$.
- (42) If $n_1 = \text{idseq}(\text{len } A)$ and $m_1 = \text{idseq}(\text{width } A)$, then $\text{Segm}(A, n_1, m_1) = A$.

Let us observe that there exists a subset of \mathbb{N} which is empty, without zero, and finite and there exists a subset of \mathbb{N} which is non empty, without zero, and finite.

Let us consider n. Observe that Seg n is without zero.

Let X be a without zero set and let Y be a set. One can verify that $X \setminus Y$ is without zero and $X \cap Y$ is without zero.

One can prove the following proposition

(43) For every finite without zero subset N of N there exists k such that $N \subseteq \text{Seg } k$.

Let N be a finite without zero subset of N. Then $\operatorname{Sgm} N$ is an element of $\mathbb{N}^{\operatorname{card} N}$.

Let D be a non empty set, let A be a matrix over D, and let P, Q be without zero finite subsets of N. The functor Segm(A, P, Q) yields a matrix over D of dimension card $P \times \text{card } Q$ and is defined by:

(Def. 2) $\operatorname{Segm}(A, P, Q) = \operatorname{Segm}(A, \operatorname{Sgm} P, \operatorname{Sgm} Q).$

Next we state two propositions:

- (44) Segm $(A, \{i_0\}, \{j_0\}) = \langle \langle A_{i_0, j_0} \rangle \rangle.$
- (45) If $i_0 < j_0$ and $n_0 < m_0$, then $\text{Segm}(A, \{i_0, j_0\}, \{n_0, m_0\}) = \begin{pmatrix} A_{i_0, n_0} & A_{i_0, m_0} \\ A_{j_0, n_0} & A_{j_0, m_0} \end{pmatrix}$.

In the sequel P, P_1 , P_2 , Q, Q_1 , Q_2 are without zero finite subsets of \mathbb{N} . The following propositions are true:

- (46) $\operatorname{Segm}(A, \operatorname{Seg} \operatorname{len} A, \operatorname{Seg} \operatorname{width} A) = A.$
- (47) If $i \in \text{Seg card } P$ and $Q \subseteq \text{Seg width } A$, then $\text{Line}(\text{Segm}(A, P, Q), i) = \text{Line}(A, (\text{Sgm } P)(i)) \cdot \text{Sgm } Q$.
- (48) If $i \in \text{Seg card } P$, then Line(Segm(A, P, Seg width A), i) = Line(A, (Sgm P)(i)).
- (49) If $j \in \operatorname{Seg} \operatorname{card} Q$ and $P \subseteq \operatorname{Seg} \operatorname{len} A$, then $(\operatorname{Segm}(A, P, Q))_{\Box,j} = A_{\Box, (\operatorname{Sgm} Q)(j)} \cdot \operatorname{Sgm} P$.
- (50) If $j \in \operatorname{Seg} \operatorname{card} Q$, then $(\operatorname{Segm}(A, \operatorname{Seg} \operatorname{len} A, Q))_{\Box,j} = A_{\Box, (\operatorname{Sgm} Q)(j)}$.
- (51) Segm(A, Seg len $A \setminus \{i\}$, Seg width A) = $A_{|i}$.
- (52) Segm(M, Seg len M, Seg width $M \setminus \{i\}$) = the deleting of *i*-column in M.
- (53) $(\operatorname{Sgm} P)^{-1}(X)$ is a without zero finite subset of \mathbb{N} .

- (54) If $X \subseteq P$, then $\operatorname{Sgm} X = \operatorname{Sgm} P \cdot \operatorname{Sgm}((\operatorname{Sgm} P)^{-1}(X))$.
- (55) $[(\operatorname{Sgm} P)^{-1}(X), (\operatorname{Sgm} Q)^{-1}(Y)] \subseteq \text{the indices of } \operatorname{Segm}(A, P, Q).$
- (56) If $P \subseteq P_1$ and $Q \subseteq Q_1$ and $P_2 = (\operatorname{Sgm} P_1)^{-1}(P)$ and $Q_2 = (\operatorname{Sgm} Q_1)^{-1}(Q)$, then $[\operatorname{rng} \operatorname{Sgm} P_2, \operatorname{rng} \operatorname{Sgm} Q_2] \subseteq$ the indices of $\operatorname{Segm}(A, P_1, Q_1)$ and $\operatorname{Segm}(\operatorname{Segm}(A, P_1, Q_1), P_2, Q_2) = \operatorname{Segm}(A, P, Q)$.
- (57) Suppose $P = \emptyset$ iff $Q = \emptyset$ and $[P, Q] \subseteq$ the indices of Segm (A, P_1, Q_1) . Then there exist P_2 , Q_2 such that $P_2 \subseteq P_1$ and $Q_2 \subseteq Q_1$ and $P_2 = (\operatorname{Sgm} P_1)^{\circ}P$ and $Q_2 = (\operatorname{Sgm} Q_1)^{\circ}Q$ and card $P_2 = \operatorname{card} P$ and card $Q_2 = \operatorname{card} Q$ and Segm $(\operatorname{Segm}(A, P_1, Q_1), P, Q) = \operatorname{Segm}(A, P_2, Q_2)$.
- (58) For every matrix M over K of dimension n holds $\text{Segm}(M, \text{Seg } n \setminus \{i\}, \text{Seg } n \setminus \{j\}) =$ the deleting of *i*-row and *j*-column in M.
- (59) Let F, F_2 be finite sequences of elements of D. Suppose len F = width A' and $F_2 = F \cdot \text{Sgm} Q$ and $[P, Q] \subseteq$ the indices of A'. Then $\text{RLine}(\text{Segm}(A', P, Q), i, F_2) = \text{Segm}(\text{RLine}(A', (\text{Sgm} P)(i), F), P, Q).$
- (60) Let F be a finite sequence of elements of D and given i, P. If $i \notin P$ and $[P, Q] \subseteq$ the indices of A', then Segm(A', P, Q) = Segm(RLine(A', i, F), P, Q).
- (61) If $[P, Q] \subseteq$ the indices of A and card P = 0 iff card Q = 0, then $(\operatorname{Segm}(A, P, Q))^{\mathrm{T}} = \operatorname{Segm}(A^{\mathrm{T}}, Q, P).$
- (62) If $[P, Q] \subseteq$ the indices of A and if card Q = 0, then card P = 0, then Segm $(A, P, Q) = (\text{Segm}(A^{T}, Q, P))^{T}$.
- (63) If $[P, Q] \subseteq$ the indices of M, then $a \cdot \text{Segm}(M, P, Q) = \text{Segm}(a \cdot M, P, Q)$.

Let D be a non empty set, let A be a matrix over D, and let P, Q be without zero finite subsets of N. Let us assume that card P = card Q. The functor EqSegm(A, P, Q) yields a matrix over D of dimension card P and is defined by:

(Def. 3) EqSegm(A, P, Q) = Segm(A, P, Q).

Next we state several propositions:

- (64) For all P, Q, i, j such that $i \in \operatorname{Seg} \operatorname{card} P$ and $j \in \operatorname{Seg} \operatorname{card} P$ and $\operatorname{card} P = \operatorname{card} Q$ holds $\operatorname{Delete}(\operatorname{EqSegm}(M, P, Q), i, j) = \operatorname{EqSegm}(M, P \setminus \{(\operatorname{Sgm} P)(i)\}, Q \setminus \{(\operatorname{Sgm} Q)(j)\})$ and $\operatorname{card}(P \setminus \{(\operatorname{Sgm} P)(i)\}) = \operatorname{card}(Q \setminus \{(\operatorname{Sgm} Q)(j)\}).$
- (65) For all M, P, P_1 , Q_1 such that card $P_1 = \text{card } Q_1$ and $P \subseteq P_1$ and Det EqSegm $(M, P_1, Q_1) \neq 0_K$ there exists Q such that $Q \subseteq Q_1$ and card P = card Q and Det EqSegm $(M, P, Q) \neq 0_K$.
- (66) For all M, P_1 , Q, Q_1 such that card $P_1 = \text{card } Q_1$ and $Q \subseteq Q_1$ and Det EqSegm $(M, P_1, Q_1) \neq 0_K$ there exists P such that $P \subseteq P_1$ and card P = card Q and Det EqSegm $(M, P, Q) \neq 0_K$.
- (67) If card $P = \operatorname{card} Q$, then $[P, Q] \subseteq$ the indices of A iff $P \subseteq \operatorname{Seg} \operatorname{len} A$

and $Q \subseteq \text{Seg width } A$.

- (68) Let given P, Q, i, j_0 . Suppose $i \in \text{Seg } n'$ and $j_0 \in \text{Seg } n'$ and $i \in P$ and $j_0 \notin P$ and card P = card Q and $[P, Q] \subseteq$ the indices of M'. Then card $P = \text{card}((P \setminus \{i\}) \cup \{j_0\})$ but $[(P \setminus \{i\}) \cup \{j_0\}, Q] \subseteq$ the indices of M'but Det EqSegm(RLine $(M', i, \text{Line}(M', j_0)), P, Q) = \text{Det EqSegm}(M', (P \setminus \{i\}) \cup \{j_0\}, Q)$ or Det EqSegm(RLine $(M', i, \text{Line}(M', j_0)), P, Q) = -\text{Det EqSegm}(M', (P \setminus \{i\}) \cup \{j_0\}, Q).$
- (69) If card $P = \operatorname{card} Q$, then $[P, Q] \subseteq$ the indices of A iff $[Q, P] \subseteq$ the indices of A^{T} .
- (70) If $[P, Q] \subseteq$ the indices of M and card P = card Q, then Det EqSegm(M, P, Q) = Det EqSegm (M^{T}, Q, P) .
- (71) For every matrix M over K of dimension n holds $\text{Det}(a \cdot M) = \text{power}_{K}(a, n) \cdot \text{Det } M$.
- (72) If $[P, Q] \subseteq$ the indices of M and card $P = \operatorname{card} Q$, then $\operatorname{Det} \operatorname{EqSegm}(a \cdot M, P, Q) = \operatorname{power}_{K}(a, \operatorname{card} P) \cdot \operatorname{Det} \operatorname{EqSegm}(M, P, Q).$

Let K be a field and let M be a matrix over K. The functor rk(M) yielding an element of N is defined by the conditions (Def. 4).

- (Def. 4)(i) There exist P, Q such that $[P, Q] \subseteq$ the indices of M and card $P = \operatorname{card} Q$ and card $P = \operatorname{rk}(M)$ and Det $\operatorname{EqSegm}(M, P, Q) \neq 0_K$, and
 - (ii) for all P_1 , Q_1 such that $[P_1, Q_1] \subseteq$ the indices of M and card $P_1 =$ card Q_1 and Det EqSegm $(M, P_1, Q_1) \neq 0_K$ holds card $P_1 \leq$ rk(M).

The following propositions are true:

- (73) For all P, Q such that $[P, Q] \subseteq$ the indices of M and card $P = \operatorname{card} Q$ holds card $P \leq \operatorname{len} M$ and card $Q \leq \operatorname{width} M$.
- (74) $\operatorname{rk}(M) \leq \operatorname{len} M$ and $\operatorname{rk}(M) \leq \operatorname{width} M$.
- (75) If $[\operatorname{rng} n_2, \operatorname{rng} n_3] \subseteq$ the indices of M and $\operatorname{Det} \operatorname{Segm}(M, n_2, n_3) \neq 0_K$, then there exist P_1 , P_2 such that $P_1 = \operatorname{rng} n_2$ and $P_2 = \operatorname{rng} n_3$ and $\operatorname{card} P_1 = \operatorname{card} P_2$ and $\operatorname{card} P_1 = n$ and $\operatorname{Det} \operatorname{EqSegm}(M, P_1, P_2) \neq 0_K$.
- (76) Let R_1 be an element of \mathbb{N} . Then $\operatorname{rk}(M) = R_1$ if and only if the following conditions are satisfied:
 - (i) there exist elements r_1 , r_2 of \mathbb{N}^{R_1} such that $[\operatorname{rng} r_1, \operatorname{rng} r_2] \subseteq$ the indices of M and $\operatorname{Det} \operatorname{Segm}(M, r_1, r_2) \neq 0_K$, and
 - (ii) for all n, n_2, n_3 such that $[\operatorname{rng} n_2, \operatorname{rng} n_3] \subseteq$ the indices of M and $\operatorname{Det} \operatorname{Segm}(M, n_2, n_3) \neq 0_K$ holds $n \leq R_1$.
- (77) If n = 0 or m = 0, then $rk(Segm(M, n_1, m_1)) = 0$.
- (78) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] \subseteq$ the indices of M, then $\operatorname{rk}(M) \ge \operatorname{rk}(\operatorname{Segm}(M, n_1, m_1)).$
- (79) If $[P, Q] \subseteq$ the indices of M, then $\operatorname{rk}(M) \ge \operatorname{rk}(\operatorname{Segm}(M, P, Q))$.
- (80) If $P \subseteq P_1$ and $Q \subseteq Q_1$, then $\operatorname{rk}(\operatorname{Segm}(M, P, Q)) \leq \operatorname{rk}(\operatorname{Segm}(M, P_1, Q_1))$.

- (81) For all functions f, g such that $\operatorname{rng} f \subseteq \operatorname{rng} g$ there exists a function h such that dom $h = \operatorname{dom} f$ and $\operatorname{rng} h \subseteq \operatorname{dom} g$ and $f = g \cdot h$.
- (82) If $[\operatorname{rng} n_1, \operatorname{rng} m_1] =$ the indices of M, then $\operatorname{rk}(M) = \operatorname{rk}(\operatorname{Segm}(M, n_1, m_1)).$
- (83) For every matrix M over K of dimension n holds $\operatorname{rk}(M) = n$ iff $\operatorname{Det} M \neq 0_K$.
- (84) $\operatorname{rk}(M) = \operatorname{rk}(M^{\mathrm{T}}).$
- (85) For every matrix M over K of dimension $n \times m$ and for every permutation F of Seg n holds $\operatorname{rk}(M) = \operatorname{rk}(M \cdot F)$.
- (86) If $a \neq 0_K$, then $\operatorname{rk}(M) = \operatorname{rk}(a \cdot M)$.
- (87) Let p, p_2 be finite sequences of elements of K and f be a function. If $p_2 = p \cdot f$ and $\operatorname{rng} f \subseteq \operatorname{dom} p$, then $a \cdot p \cdot f = a \cdot p_2$.
- (88) Let p, p_2, q, q_1 be finite sequences of elements of K and f be a function. If $p_2 = p \cdot f$ and $\operatorname{rng} f \subseteq \operatorname{dom} p$ and $q_1 = q \cdot f$ and $\operatorname{rng} f \subseteq \operatorname{dom} q$, then $(p+q) \cdot f = p_2 + q_1$.
- (89) If $a \neq 0_K$, then $\operatorname{rk}(M') = \operatorname{rk}(\operatorname{RLine}(M', i, a \cdot \operatorname{Line}(M', i)))$.
- (90) If $\operatorname{Line}(M, i) = \operatorname{width} M \mapsto 0_K$, then $\operatorname{rk}(\operatorname{the deleting of } i\operatorname{-row in } M) = \operatorname{rk}(M)$.
- (91) For every p such that len p = width M' holds rk(the deleting of *i*-row in M') = rk(RLine($M', i, 0_K \cdot p$)).
- (92) If $j \in \text{Seglen } M'$ and if i = j, then $a \neq -\mathbf{1}_K$, then $\text{rk}(M') = \text{rk}(\text{RLine}(M', i, \text{Line}(M', i) + a \cdot \text{Line}(M', j))).$
- (93) If $j \in \text{Seglen } M'$ and $j \neq i$, then $\text{rk}(\text{the deleting of } i\text{-row in } M') = \text{rk}(\text{RLine}(M', i, a \cdot \text{Line}(M', j))).$
- (94) $\operatorname{rk}(M) > 0$ iff there exist i, j such that $\langle i, j \rangle \in$ the indices of M and $M_{i,j} \neq 0_K$.

(95)
$$\operatorname{rk}(M) = 0$$
 iff $M = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{(\operatorname{len} M) \times (\operatorname{width} M)}$

- (96) $\operatorname{rk}(M) = 1$ if and only if the following conditions are satisfied:
- (i) there exist i, j such that $\langle i, j \rangle \in$ the indices of M and $M_{i,j} \neq 0_K$, and
- (ii) for all i_0, j_0, n_0, m_0 such that $i_0 \neq j_0$ and $n_0 \neq m_0$ and $[\{i_0, j_0\}, \{n_0, m_0\}\}] \subseteq$ the indices of M holds Det EqSegm $(M, \{i_0, j_0\}, \{n_0, m_0\}) = 0_K$.
- (97) $\operatorname{rk}(M) = 1$ if and only if the following conditions are satisfied:
- (i) there exist i, j such that $\langle i, j \rangle \in$ the indices of M and $M_{i,j} \neq 0_K$, and
- (ii) for all i, j, n, m such that $[\{i, j\}, \{n, m\}] \subseteq$ the indices of M holds $M_{i,n} \cdot M_{j,m} = M_{i,m} \cdot M_{j,n}$.

(98) $\operatorname{rk}(M) = 1$ if and only if there exists *i* such that $i \in \operatorname{Seg} \operatorname{len} M$ and there exists *j* such that $j \in \operatorname{Seg} \operatorname{width} M$ and $M_{i,j} \neq 0_K$ and for every *k* such that $k \in \operatorname{Seg} \operatorname{len} M$ there exists *a* such that $\operatorname{Line}(M, k) = a \cdot \operatorname{Line}(M, i)$.

Let us consider K. Observe that there exists a matrix over K which is diagonal.

One can prove the following propositions:

- (99) Let M be a diagonal matrix over K and N_1 be a set. Suppose $N_1 = \{i : \langle i, i \rangle \in \text{the indices of } M \land M_{i,i} \neq 0_K\}$. Let given P, Q. If $[P, Q] \subseteq \text{the indices of } M$ and card P = card Q and $\text{Det EqSegm}(M, P, Q) \neq 0_K$, then $P \subseteq N_1$ and $Q \subseteq N_1$.
- (100) For every diagonal matrix M over K and for every P such that $[P, P] \subseteq$ the indices of M holds Segm(M, P, P) is diagonal.
- (101) Let M be a diagonal matrix over K and N_1 be a set. If $N_1 = \{i : \langle i, i \rangle \in \text{the indices of } M \land M_{i,i} \neq 0_K\}$, then $\operatorname{rk}(M) = \overline{N_1}$.

For simplicity, we adopt the following rules: v, v_1, v_2, u denote vectors of the *n*-dimension vector space over K, t, t_1, t_2 denote elements of (the carrier of $K)^n$, L denotes a linear combination of the *n*-dimension vector space over K, and M, M_1 denote matrices over K of dimension $m \times n$.

We now state the proposition

- (102)(i) The carrier of the *n*-dimension vector space over K = (the carrier of $K)^n$,
 - (ii) $0_{\text{the }n\text{-dimension vector space over }K} = n \mapsto 0_K,$
 - (iii) if $t_1 = v_1$ and $t_2 = v_2$, then $t_1 + t_2 = v_1 + v_2$, and
 - (iv) if t = v, then $a \cdot t = a \cdot v$.

Let us consider K, n. Then the n-dimension vector space over K is a strict vector space over K.

Let us consider K, n. One can verify that every vector of the n-dimension vector space over K is function-like and relation-like.

Let us consider K, m, n and let M be a matrix over K of dimension $m \times n$. We introduce lines(M) as a synonym of rng M. We introduce M is without repeated line as a synonym of M is one-to-one.

Let K be a field, let us consider m, n, and let M be a matrix over K of dimension $m \times n$. Then lines(M) is a subset of the n-dimension vector space over K.

Next we state two propositions:

- (103) $x \in \text{lines}(M)$ iff there exists *i* such that $i \in \text{Seg } m$ and x = Line(M, i).
- (104) Let V be a finite subset of the n-dimension vector space over K. Then there exists a matrix M over K of dimension card $V \times n$ such that M is without repeated line and lines(M) = V.

Let us consider K, n and let F be a finite sequence of elements of the ndimension vector space over K. The functor FinS2MX F yielding a matrix over K of dimension len $F \times n$ is defined by:

(Def. 5) FinS2MX F = F.

Let us consider K, m, n and let M be a matrix over K of dimension $m \times n$. The functor MX2FinS M yielding a finite sequence of elements of the n-dimension vector space over K is defined as follows:

(Def. 6) MX2FinS M = M.

One can prove the following propositions:

- (105) If rk(M) = m, then M is without repeated line.
- (106) If $i \in \text{Seg len } M$ and a = L(M(i)), then Line(FinS2MX(L MX2FinSM), i) = $a \cdot \text{Line}(M, i)$.
- (107) If M is without repeated line and the support of $L \subseteq \text{lines}(M)$ and $i \in \text{Seg } n$, then $(\sum L)(i) = \sum ((\text{FinS2MX}(L \text{ MX2FinS } M))_{\Box,i}).$
- (108) Let given M, M_1 . Suppose M is without repeated line and for every i such that $i \in \text{Seg } m$ there exists a such that $\text{Line}(M_1, i) = a \cdot \text{Line}(M, i)$. Then there exists a linear combination L of lines(M) such that L MX2FinS $M = M_1$.
- (109) Let given M. Suppose M is without repeated line. Then for every i such that $i \in \text{Seg } m$ holds $\text{Line}(M, i) \neq n \mapsto 0_K$ and for every M_1 such that for every i such that $i \in \text{Seg } m$ there exists a such that $\text{Line}(M_1, i) = a \cdot \text{Line}(M, i)$ and for every j such that $j \in \text{Seg } n$ holds $\sum((M_1)_{\Box,j}) = (A \cap D)^{m \times n}$

$$0_K$$
 holds $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K$ if and only if lines (M) is linearly

independent.

- (110) If rk(M) = m, then lines(M) is linearly independent.
- (111) Let M be a diagonal n-dimensional matrix over K. Suppose rk(M) = n. Then lines(M) is a basis of the n-dimension vector space over K.

Let us consider K, n. Then the n-dimension vector space over K is a strict finite dimensional vector space over K.

The following propositions are true:

- (112) dim(the *n*-dimension vector space over K) = n.
- (113) Let given M, i, a. Suppose that for every j such that $j \in \text{Seg } m$ holds $M_{j,i} = a$. Then M is without repeated line if and only if $\text{Segm}(M, \text{Seg len } M, \text{Seg width } M \setminus \{i\})$ is without repeated line.
- (114) Let given M, i. Suppose M is without repeated line and lines(M) is linearly independent and for every j such that $j \in \text{Seg } m$ holds $M_{j,i} = 0_K$. Then lines $(\text{Segm}(M, \text{Seg len } M, \text{Seg width } M \setminus \{i\}))$ is linearly independent.

- (115) Let V be a vector space over K and U be a finite subset of V. Suppose U is linearly independent. Let u, v be vectors of V. If $u \in U$ and $v \in U$ and $u \neq v$, then $(U \setminus \{u\}) \cup \{u + a \cdot v\}$ is linearly independent.
- (116) Let V be a vector space over K and u, v be vectors of V. Then $x \in \text{Lin}(\{u, v\})$ if and only if there exist a, b such that $x = a \cdot u + b \cdot v$.
- (117) Let given M. Suppose lines(M) is linearly independent and M is without repeated line. Let given i, j. Suppose $j \in \text{Seg len } M$ and $i \neq j$. Then $\text{RLine}(M, i, \text{Line}(M, i) + a \cdot \text{Line}(M, j))$ is without repeated line and lines $(\text{RLine}(M, i, \text{Line}(M, i) + a \cdot \text{Line}(M, j)))$ is linearly independent.
- (118) If $P \subseteq \text{Seg } m$, then $\text{lines}(\text{Segm}(M, P, \text{Seg } n)) \subseteq \text{lines}(M)$.
- (119) If $P \subseteq \text{Seg } m$ and lines(M) is linearly independent, then lines(Segm(M, P, Seg n)) is linearly independent.
- (120) If $P \subseteq \text{Seg } m$ and M is without repeated line, then Segm(M, P, Seg n) is without repeated line.
- (121) Let M be a matrix over K of dimension $m \times n$. Then lines(M) is linearly independent and M is without repeated line if and only if rk(M) = m.
- (122) Let U be a subset of the n-dimension vector space over K. Suppose $U \subseteq \text{lines}(M)$. Then there exists P such that $P \subseteq \text{Seg } m$ and lines(Segm(M, P, Seg n)) = U and Segm(M, P, Seg n) is without repeated line.
- (123) Let R_1 be an element of \mathbb{N} . Then $\operatorname{rk}(M) = R_1$ if and only if the following conditions are satisfied:
 - (i) there exists a finite subset U of the n-dimension vector space over K such that U is linearly independent and $U \subseteq \text{lines}(M)$ and $\text{card } U = R_1$, and
 - (ii) for every finite subset W of the n-dimension vector space over K such that W is linearly independent and $W \subseteq \text{lines}(M)$ holds card $W \leq R_1$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
- [5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643–649, 1990.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990: D. B. K. L. Theorem in the function of th
- [9] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

- [10] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241–245, 1996.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [14] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [15] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Formalized Mathematics*, 1(2):335–342, 1990.
- [16] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [17] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235–240, 1992.
- [18] Yatsuka Nakamura. Determinant of some matrices of field elements. Formalized Mathematics, 14(1):1–5, 2006.
- [19] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [20] Karol Pąk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17–25, 2007.
- [21] Karol Pak and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143– 150, 2007.
- [22] Yozo Toda. The formalization of simple graphs. Formalized Mathematics, 5(1):137–144, 1996.
- [23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
- 1(2):329-334, 1990.
- [25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [26] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [27] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [28] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187–190, 1990.
- [29] Wojciech A. Trybulec. Basis of vector space. *Formalized Mathematics*, 1(5):883–885, 1990.
- [30] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [31] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [32] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877–882, 1990.
- [33] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569–573, 1990.
- [34] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
- [35] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.
- [36] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [37] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [38] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [39] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.
- [40] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.
- [41] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205–211, 1992.

- [42] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.
- [43] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423–428, 1996.

Received August 28, 2007