Some Properties of Line and Column Operations on Matrices

Xiquan Liang Qingdao University of Science and Technology China Tao Sun Qingdao University of Science and Technology China

Dahai Hu Qingdao University of Science and Technology China

Summary. This article describes definitions of elementary operations about matrix and their main properties.

MML identifier: MATRIX12, version: 7.8.05 4.87.985

The articles [8], [13], [17], [11], [1], [18], [5], [6], [2], [7], [15], [16], [9], [10], [20], [4], [3], [21], [12], [14], and [19] provide the notation and terminology for this paper.

For simplicity, we adopt the following convention: j, k, l, n, m, i are natural numbers, K is a field, a is an element of K, M, M_1 are matrices over K of dimension $n \times m$, and A is a matrix over K of dimension n.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, and let l, k be natural numbers. The functor InterchangeLine(M, l, k) yielding a matrix over K of dimension $n \times m$ is defined by the conditions (Def. 1).

(Def. 1)(i) len InterchangeLine(M, l, k) = len M, and

(ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if i = l, then $(\text{InterchangeLine}(M, l, k))_{i,j} = M_{k,j}$ and if i = k, then $(\text{InterchangeLine}(M, l, k))_{i,j} = M_{l,j}$ and if $i \neq l$ and $i \neq k$, then $(\text{InterchangeLine}(M, l, k))_{i,j} = M_{i,j}$.

C 2007 University of Białystok ISSN 1426-2630 The following three propositions are true:

- (1) For all matrices M_1 , M_2 over K of dimension $n \times m$ holds width $M_1 =$ width M_2 .
- (2) Let given M, M_1 , i such that $l \in \text{dom } M$ and $k \in \text{dom } M$ and $i \in \text{dom } M$ and $M_1 = \text{InterchangeLine}(M, l, k)$. Then
- (i) if i = l, then $\operatorname{Line}(M_1, i) = \operatorname{Line}(M, k)$,
- (ii) if i = k, then $\text{Line}(M_1, i) = \text{Line}(M, l)$, and
- (iii) if $i \neq l$ and $i \neq k$, then $\text{Line}(M_1, i) = \text{Line}(M, i)$.
- (3) For all a, i, j, M such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds $(a \cdot \text{Line}(M, i))(j) = a \cdot M_{i,j}.$

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l be a natural number, and let a be an element of K. The functor ScalarXLine(M, l, a) yields a matrix over K of dimension $n \times m$ and is defined by the conditions (Def. 2).

(Def. 2)(i) len ScalarXLine(M, l, a) = len M, and

(ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if i = l, then $(\text{ScalarXLine}(M, l, a))_{i,j} = a \cdot M_{l,j}$ and if $i \neq l$, then $(\text{ScalarXLine}(M, l, a))_{i,j} = M_{i,j}$.

We now state the proposition

(4) If $l \in \text{dom } M$ and $i \in \text{dom } M$ and $a \neq 0_K$ and $M_1 = \text{ScalarXLine}(M, l, a)$, then if i = l, then $\text{Line}(M_1, i) = a \cdot \text{Line}(M, l)$ and if $i \neq l$, then $\text{Line}(M_1, i) = \text{Line}(M, i)$.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l, k be natural numbers, and let a be an element of K. Let us assume that $l \in \text{dom } M$ and $k \in \text{dom } M$. The functor RlineXScalar(M, l, k, a) yielding a matrix over K of dimension $n \times m$ is defined by the conditions (Def. 3).

- (Def. 3)(i) len RlineXScalar(M, l, k, a) = len M, and
 - (ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if i = l, then $(\text{RlineXScalar}(M, l, k, a))_{i,j} = a \cdot M_{k,j} + M_{l,j}$ and if $i \neq l$, then $(\text{RlineXScalar}(M, l, k, a))_{i,j} = M_{i,j}$.

We now state the proposition

(5) If $l \in \text{dom } M$ and $k \in \text{dom } M$ and $i \in \text{dom } M$ and $M_1 = \text{RlineXScalar}(M, l, k, a)$, then if i = l, then $\text{Line}(M_1, i) = a \cdot \text{Line}(M, k) + \text{Line}(M, l)$ and if $i \neq l$, then $\text{Line}(M_1, i) = \text{Line}(M, i)$.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, and let l, k be natural numbers. We introduce ILine(M, l, k) as a synonym of InterchangeLine(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l be a natural number, and let a be an element of K. We

introduce SXLine(M, l, a) as a synonym of ScalarXLine(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l, k be natural numbers, and let a be an element of K. We introduce RLineXS(M, l, k, a) as a synonym of RlineXScalar(M, l, k, a).

We now state several propositions:

$$\begin{array}{ll} \text{(6)} \quad \text{If } l \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } k \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right), \text{ then } \\ \text{ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ & 0 & 1 \end{array} \right)_{K}^{n \times n}, l, k \right) \cdot A = \text{ILine}(A, l, k). \\ \text{(7)} \quad \text{For all } l, a, A \text{ such that } l \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } a \neq 0_{K} \text{ holds } \\ \text{SXLine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n}, l, a \right) \cdot A = \text{SXLine}(A, l, a). \\ \text{(8)} \quad \text{If } l \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } k \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right), \text{ then } \\ \text{RLineXS}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n}, l, k, a \right) \cdot A = \text{RLineXS}(A, l, k, a). \\ \text{(9)} \quad \text{ILine}(M, k, k) = M. \\ \text{(10)} \quad \text{ILine}(M, l, k) = \text{ILine}(M, k, l). \\ \text{(11)} \quad \text{If } l \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } k \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right), \text{ then } \\ \text{ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } k \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right), \text{ then } \\ \text{ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right) \text{ and } k \in \operatorname{dom}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n} \right), \text{ then } \\ \text{ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n}, l, k \right) \text{ is invertible and } \\ \text{(ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n}, l, k \right) = \text{ILine}\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)_{K}^{n \times n}, l, k \right). \end{array} \right)$$

(13) If
$$l \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & 0 \end{pmatrix}_{K}^{n \times n}$$
) and $k \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & 0 \end{pmatrix}_{K}^{n \times n}$)
and $k \neq l$, then RLineXS($\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, l, k, a) is invertible and
(RLineXS($\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, l, k, a)) $\overset{\sim}{=}$ RLineXS($\begin{pmatrix} 1 & 0 \\ \ddots & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$,
 $l, k, -a$).
(14) If $l \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & 1 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$) and $a \neq 0_{K}$, then
SXLine($\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, l, a) is invertible and
(SXLine($\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, l, a)) $\overset{\sim}{=}$ SXLine($\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, l, a^{-1}).

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, and let l, k be natural numbers. Let us assume that $l \in \text{Seg width } M$ and $k \in \text{Seg width } M$ and n > 0 and m > 0. The functor InterchangeCol(M, l, k) yields a matrix over K of dimension $n \times m$ and is defined by the conditions (Def. 4).

(Def. 4)(i) len InterchangeCol(M, l, k) = len M, and

(ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if j = l, then $(\text{InterchangeCol}(M, l, k))_{i,j} = M_{i,k}$ and if j = k, then $(\text{InterchangeCol}(M, l, k))_{i,j} = M_{i,l}$ and if $j \neq l$ and $j \neq k$, then $(\text{InterchangeCol}(M, l, k))_{i,j} = M_{i,j}$.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l be a natural number, and let a be an element of K. Let us assume that $l \in \text{Seg width } M$ and n > 0 and m > 0. The functor ScalarXCol(M, l, a) yielding a matrix over K of dimension $n \times m$ is defined by the conditions (Def. 5).

(Def. 5)(i) len ScalarXCol(M, l, a) = len M, and

(ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if j = l, then $(\text{ScalarXCol}(M, l, a))_{i,j} = a \cdot M_{i,l}$ and if $j \neq l$, then $(\text{ScalarXCol}(M, l, a))_{i,j} = M_{i,j}$.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l, k be natural numbers, and let a be an element of K. Let us assume that $l \in \text{Seg width } M$ and $k \in \text{Seg width } M$ and n > 0 and m > 0. The functor RcolXScalar(M, l, k, a) yielding a matrix over K of dimension $n \times m$ is defined by the conditions (Def. 6).

(Def. 6)(i) len RcolXScalar
$$(M, l, k, a) = \text{len } M$$
, and

(ii) for all i, j such that $i \in \text{dom } M$ and $j \in \text{Seg width } M$ holds if j = l, then $(\text{RcolXScalar}(M, l, k, a))_{i,j} = a \cdot M_{i,k} + M_{i,l}$ and if $j \neq l$, then $(\text{RcolXScalar}(M, l, k, a))_{i,j} = M_{i,j}$.

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, and let l, k be natural numbers. We introduce ICol(M, l, k) as a synonym of InterchangeCol(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l be a natural number, and let a be an element of K. We introduce SXCol(M, l, a) as a synonym of ScalarXCol(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of dimension $n \times m$, let l, k be natural numbers, and let a be an element of K. We introduce $\operatorname{RColXS}(M, l, k, a)$ as a synonym of $\operatorname{RcolXScalar}(M, l, k, a)$.

We now state several propositions:

- (15) If $l \in \text{Seg width } M$ and $k \in \text{Seg width } M$ and n > 0 and m > 0 and $M_1 = M^{\text{T}}$, then $(\text{ILine}(M_1, l, k))^{\text{T}} = \text{ICol}(M, l, k)$.
- (16) If $l \in \text{Seg width } M$ and $a \neq 0_K$ and n > 0 and m > 0 and $M_1 = M^T$, then $(\text{SXLine}(M_1, l, a))^T = \text{SXCol}(M, l, a).$
- (17) If $l \in \text{Seg width } M$ and $k \in \text{Seg width } M$ and n > 0 and m > 0 and $M_1 = M^{\text{T}}$, then $(\text{RLineXS}(M_1, l, k, a))^{\text{T}} = \text{RColXS}(M, l, k, a)$.

(18) If
$$l \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$$
 and $k \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$) and
 $n > 0$, then $A \cdot \operatorname{ICol}\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, $l, k) = \operatorname{ICol}(A, l, k)$.
(19) If $l \in \operatorname{dom}\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$) and $a \neq 0_{K}$ and $n > 0$, then $A \cdot \operatorname{SXCol}\begin{pmatrix} 1 & 0 \\ \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$, $l, a) = \operatorname{SXCol}(A, l, a)$.

$$\begin{array}{ll} \text{(20)} \quad \text{If } l \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } n > 0, \text{ then } A \cdot \operatorname{RColXS}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } n > 0, \text{ then } (\operatorname{ICol}\left(\begin{pmatrix}1 & 0 \\ 1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}, l, k)\right)^{\vee} = \operatorname{ICol}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } n > 0, \text{ then } (\operatorname{ICol}\left(\begin{pmatrix}1 & 0 \\ 1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \notin \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}_{K}^{n \times n}\right) \text{ and } k \in \operatorname{dom}\left(\begin{pmatrix}1$$

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
- [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.

156

- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. *Formalized Mathematics*, 1(1):153–164, 1990.
- [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [10] Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.
- [11] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329–334, 1990.
- [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [14] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979–981, 1990.
- [15] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.
- [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [19] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.
- [20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
- [21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. *Formalized Mathematics*, 4(1):1–8, 1993.

Received August 13, 2007