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The articles [8], [13], [17], [11], [1], [18], [5], [6], [2], [7], [15], [16], [9], [10], [20],

[4], [3], [21], [12], [14], and [19] provide the notation and terminology for this

paper.

For simplicity, we adopt the following convention: j, k, l, n, m, i are natural

numbers, K is a field, a is an element of K, M , M1 are matrices over K of

dimension n × m, and A is a matrix over K of dimension n.

Let us consider n, m, let us consider K, let M be a matrix over

K of dimension n × m, and let l, k be natural numbers. The functor

InterchangeLine(M, l, k) yielding a matrix over K of dimension n × m is defined

by the conditions (Def. 1).

(Def. 1)(i) len InterchangeLine(M, l, k) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

i = l, then (InterchangeLine(M, l, k))i,j = Mk,j and if i = k, then

(InterchangeLine(M, l, k))i,j = Ml,j and if i 6= l and i 6= k, then

(InterchangeLine(M, l, k))i,j = Mi,j.
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The following three propositions are true:

(1) For all matrices M1, M2 over K of dimension n × m holds widthM1 =

widthM2.

(2) Let given M , M1, i such that l ∈ domM and k ∈ domM and i ∈ domM

and M1 = InterchangeLine(M, l, k). Then

(i) if i = l, then Line(M1, i) = Line(M,k),

(ii) if i = k, then Line(M1, i) = Line(M, l), and

(iii) if i 6= l and i 6= k, then Line(M1, i) = Line(M, i).

(3) For all a, i, j, M such that i ∈ domM and j ∈ Seg widthM holds

(a · Line(M, i))(j) = a ·Mi,j .

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. The

functor ScalarXLine(M, l, a) yields a matrix over K of dimension n × m and is

defined by the conditions (Def. 2).

(Def. 2)(i) len ScalarXLine(M, l, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

i = l, then (ScalarXLine(M, l, a))i,j = a · Ml,j and if i 6= l, then

(ScalarXLine(M, l, a))i,j = Mi,j.

We now state the proposition

(4) If l ∈ domM and i ∈ domM and a 6= 0K and M1 =

ScalarXLine(M, l, a), then if i = l, then Line(M1, i) = a ·Line(M, l) and if

i 6= l, then Line(M1, i) = Line(M, i).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K. Let

us assume that l ∈ domM and k ∈ domM. The functor RlineXScalar(M, l, k, a)

yielding a matrix over K of dimension n × m is defined by the conditions

(Def. 3).

(Def. 3)(i) len RlineXScalar(M, l, k, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if i =

l, then (RlineXScalar(M, l, k, a))i,j = a · Mk,j + Ml,j and if i 6= l, then

(RlineXScalar(M, l, k, a))i,j = Mi,j.

We now state the proposition

(5) If l ∈ domM and k ∈ domM and i ∈ domM and M1 =

RlineXScalar(M, l, k, a), then if i = l, then Line(M1, i) = a · Line(M,k) +

Line(M, l) and if i 6= l, then Line(M1, i) = Line(M, i).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, and let l, k be natural numbers. We introduce ILine(M, l, k)

as a synonym of InterchangeLine(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. We
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introduce SXLine(M, l, a) as a synonym of ScalarXLine(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

We introduce RLineXS(M, l, k, a) as a synonym of RlineXScalar(M, l, k, a).

We now state several propositions:

(6) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

ILine(




1 0
. . .

0 1




n×n

K

, l, k) · A = ILine(A, l, k).

(7) For all l, a, A such that l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K holds

SXLine(




1 0
. . .

0 1




n×n

K

, l, a) · A = SXLine(A, l, a).

(8) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a) ·A = RLineXS(A, l, k, a).

(9) ILine(M,k, k) = M.

(10) ILine(M, l, k) = ILine(M,k, l).

(11) If l ∈ domM and k ∈ domM, then ILine(ILine(M, l, k), l, k) = M.

(12) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

), then

ILine(




1 0
. . .

0 1




n×n

K

, l, k) is invertible and

(ILine(




1 0
. . .

0 1




n×n

K

, l, k))` = ILine(




1 0
. . .

0 1




n×n

K

, l, k).
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(13) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

)

and k 6= l, then RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a) is invertible and

(RLineXS(




1 0
. . .

0 1




n×n

K

, l, k, a))` = RLineXS(




1 0
. . .

0 1




n×n

K

,

l, k,−a).

(14) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K , then

SXLine(




1 0
. . .

0 1




n×n

K

, l, a) is invertible and

(SXLine(




1 0
. . .

0 1




n×n

K

, l, a))` = SXLine(




1 0
. . .

0 1




n×n

K

, l, a−1).

Let us consider n, m, let us consider K, let M be a matrix over K of dimen-

sion n ×m, and let l, k be natural numbers. Let us assume that l ∈ Seg widthM

and k ∈ Seg widthM and n > 0 and m > 0. The functor InterchangeCol(M, l, k)

yields a matrix over K of dimension n × m and is defined by the conditions

(Def. 4).

(Def. 4)(i) len InterchangeCol(M, l, k) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

j = l, then (InterchangeCol(M, l, k))i,j = Mi,k and if j = k, then

(InterchangeCol(M, l, k))i,j = Mi,l and if j 6= l and j 6= k, then

(InterchangeCol(M, l, k))i,j = Mi,j.

Let us consider n, m, let us consider K, let M be a matrix over K of di-

mension n × m, let l be a natural number, and let a be an element of K.

Let us assume that l ∈ Seg widthM and n > 0 and m > 0. The functor

ScalarXCol(M, l, a) yielding a matrix over K of dimension n × m is defined

by the conditions (Def. 5).

(Def. 5)(i) len ScalarXCol(M, l, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if

j = l, then (ScalarXCol(M, l, a))i,j = a · Mi,l and if j 6= l, then

(ScalarXCol(M, l, a))i,j = Mi,j .
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Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

Let us assume that l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0.

The functor RcolXScalar(M, l, k, a) yielding a matrix over K of dimension n ×
m is defined by the conditions (Def. 6).

(Def. 6)(i) len RcolXScalar(M, l, k, a) = lenM, and

(ii) for all i, j such that i ∈ domM and j ∈ Seg widthM holds if j =

l, then (RcolXScalar(M, l, k, a))i,j = a · Mi,k + Mi,l and if j 6= l, then

(RcolXScalar(M, l, k, a))i,j = Mi,j.

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, and let l, k be natural numbers. We introduce ICol(M, l, k)

as a synonym of InterchangeCol(M, l, k).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l be a natural number, and let a be an element of K. We

introduce SXCol(M, l, a) as a synonym of ScalarXCol(M, l, a).

Let us consider n, m, let us consider K, let M be a matrix over K of

dimension n × m, let l, k be natural numbers, and let a be an element of K.

We introduce RColXS(M, l, k, a) as a synonym of RcolXScalar(M, l, k, a).

We now state several propositions:

(15) If l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0 and

M1 = MT, then (ILine(M1, l, k))T = ICol(M, l, k).

(16) If l ∈ Seg widthM and a 6= 0K and n > 0 and m > 0 and M1 = MT,

then (SXLine(M1, l, a))T = SXCol(M, l, a).

(17) If l ∈ Seg widthM and k ∈ Seg widthM and n > 0 and m > 0 and

M1 = MT, then (RLineXS(M1, l, k, a))T = RColXS(M, l, k, a).

(18) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then A · ICol(




1 0
. . .

0 1




n×n

K

, l, k) = ICol(A, l, k).

(19) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K and n > 0, then A ·

SXCol(




1 0
. . .

0 1




n×n

K

, l, a) = SXCol(A, l, a).
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(20) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then A · RColXS(




1 0
. . .

0 1




n×n

K

, l, k, a) = RColXS(A, l, k, a).

(21) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

) and

n > 0, then (ICol(




1 0
. . .

0 1




n×n

K

, l, k))` = ICol(




1 0
. . .

0 1




n×n

K

,

l, k).

(22) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and k ∈ dom(




1 0
. . .

0 1




n×n

K

)

and k 6= l and n > 0, then (RColXS(




1 0
. . .

0 1




n×n

K

, l, k, a))` =

RColXS(




1 0
. . .

0 1




n×n

K

, l, k,−a).

(23) If l ∈ dom(




1 0
. . .

0 1




n×n

K

) and a 6= 0K and n > 0, then

(SXCol(




1 0
. . .

0 1




n×n

K

, l, a))` = SXCol(




1 0
. . .

0 1




n×n

K

, l, a−1).
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