The Sylow Theorems

Marco Riccardi Casella Postale 49 54038 Montignoso, Italy

Summary. The goal of this article is to formalize the Sylow theorems closely following the book [4]. Accordingly, the article introduces the group operating on a set, the stabilizer, the orbits, the p-groups and the Sylow subgroups.

MML identifier: GROUP_10, version: 7.8.05 4.87.985

The papers [20], [26], [18], [9], [21], [14], [11], [27], [6], [28], [7], [3], [5], [10], [1], [23], [24], [22], [16], [13], [19], [17], [2], [25], [15], [8], and [12] provide the notation and terminology for this paper.

1. Group Operating on a Set

Let S be a non empty 1-sorted structure, let E be a set, let A be an action of the carrier of S on E, and let s be an element of S. We introduce $A \cap s$ as a synonym of A(s).

Let S be a non empty 1-sorted structure, let E be a set, let A be an action of the carrier of S on E, and let s be an element of S. Then $A \cap s$ is a function from E into E.

Let S be a unital non empty groupoid, let E be a set, and let A be an action of the carrier of S on E. We say that A is left-operation if and only if:

(Def. 1) $A \cap (\mathbf{1}_S) = \mathrm{id}_E$ and for all elements s_1, s_2 of S holds $A \cap (s_1 \cdot s_2) = (A \cap s_1) \cdot (A \cap s_2)$.

Let S be a unital non empty groupoid and let E be a set. Note that there exists an action of the carrier of S on E which is left-operation.

Let S be a unital non empty groupoid and let E be a set. A left operation of S on E is a left-operation of the carrier of S on E.

C 2007 University of Białystok ISSN 1426-2630 The scheme *ExLeftOperation* deals with a set \mathcal{A} , a group-like non empty groupoid \mathcal{B} , and a unary functor \mathcal{F} yielding a function from \mathcal{A} into \mathcal{A} , and states that:

There exists a left operation T of \mathcal{B} on \mathcal{A} such that for every

element s of \mathcal{B} holds $T(s) = \mathcal{F}(s)$

provided the parameters meet the following requirements:

• $\mathcal{F}(\mathbf{1}_{\mathcal{B}}) = \mathrm{id}_{\mathcal{A}}$, and

• For all elements s_1 , s_2 of \mathcal{B} holds $\mathcal{F}(s_1 \cdot s_2) = \mathcal{F}(s_1) \cdot \mathcal{F}(s_2)$.

Next we state the proposition

(1) Let *E* be a non empty set, *S* be a group-like non empty groupoid, *s* be an element of *S*, and L_1 be a left operation of *S* on *E*. Then $L_1 \cap s$ is one-to-one.

Let S be a non empty groupoid and let s be an element of S. We introduce γ_s as a synonym of s^* .

Let S be a group-like associative non empty groupoid. The functor Γ_S yielding a left operation of S on the carrier of S is defined as follows:

(Def. 2) For every element s of S holds $\Gamma_S(s) = \gamma_s$.

Let E be a set and let n be a set. The functor $[E]^n$ yielding a family of subsets of E is defined by:

(Def. 3) $[E]^n = \{X; X \text{ ranges over subsets of } E: \overline{X} = n\}.$

Let E be a finite set and let n be a set. One can verify that $[E]^n$ is finite. The following two propositions are true:

- (2) For every natural number n and for every non empty set E such that $\overline{\overline{n}} \leq \overline{\overline{E}}$ holds $[E]^n$ is non empty.
- (3) For every non empty finite set E and for every element k of \mathbb{N} and for all sets x_1, x_2 such that $x_1 \neq x_2$ holds card Choose $(E, k, x_1, x_2) = \text{card}([E]^k)$.

Let E be a non empty set, let n be a natural number, let S be a group-like non empty groupoid, let s be an element of S, and let L_1 be a left operation of S on E. Let us assume that $\overline{n} \leq \overline{E}$. The functor γ_{s,L_1}^n yields a function from $[E]^n$ into $[E]^n$ and is defined by:

(Def. 4) For every element X of $[E]^n$ holds $\gamma_{s,L_1}^n(X) = (L_1 \cap s)^{\circ} X$.

Let E be a non empty set, let n be a natural number, let S be a group-like non empty groupoid, and let L_1 be a left operation of S on E. Let us assume that $\overline{\overline{n}} \leq \overline{E}$. The functor $\Gamma_{L_1}^n$ yields a left operation of S on $[E]^n$ and is defined by:

(Def. 5) For every element s of S holds $\Gamma_{L_1}^n(s) = \gamma_{s,L_1}^n$.

Let S be a non empty groupoid, let s be an element of S, and let Z be a non empty set. The functor $\gamma_{s,Z}$ yielding a function from [the carrier of S, Z] into [the carrier of S, Z] is defined by the condition (Def. 6). (Def. 6) Let z_1 be an element of [the carrier of S, Z]. Then there exists an element z_2 of [the carrier of S, Z] and there exist elements s_1 , s_2 of S and there exists an element z of Z such that $z_2 = \gamma_{s,Z}(z_1)$ and $s_2 = s \cdot s_1$ and $z_1 = \langle s_1, z \rangle$ and $z_2 = \langle s_2, z \rangle$.

Let S be a group-like associative non empty groupoid and let Z be a non empty set. The functor $\Gamma_{S,Z}$ yields a left operation of S on [the carrier of S, Z] and is defined by:

(Def. 7) For every element s of S holds $\Gamma_{S,Z}(s) = \gamma_{s,Z}$.

Let G be a group, let H, P be subgroups of G, and let h be an element of H. The functor $\gamma_{h,P}$ yields a function from the left cosets of P into the left cosets of P and is defined by the condition (Def. 8).

(Def. 8) Let P_1 be an element of the left cosets of P. Then there exists an element P_2 of the left cosets of P and there exist subsets A_1 , A_2 of G and there exists an element g of G such that $P_2 = \gamma_{h,P}(P_1)$ and $A_2 = g \cdot A_1$ and $A_1 = P_1$ and $A_2 = P_2$ and g = h.

Let G be a group and let H, P be subgroups of G. The functor $\Gamma_{H,P}$ yields a left operation of H on the left cosets of P and is defined as follows:

(Def. 9) For every element h of H holds $\Gamma_{H,P}(h) = \gamma_{h,P}$.

2. Stabilizer and Orbits

Let G be a group, let E be a non empty set, let T be a left operation of G on E, and let A be a subset of E. The functor T_A yields a strict subgroup of G and is defined as follows:

(Def. 10) The carrier of $T_A = \{g; g \text{ ranges over elements of } G: (T \cap g)^{\circ}A = A\}$. Let G be a group, let E be a non empty set, let T be a left operation of G on E, and let x be an element of E. The functor T_x yielding a strict subgroup of G is defined by:

(Def. 11) $T_x = T_{\{x\}}$.

Let S be a unital non empty groupoid, let E be a set, let T be a left operation of S on E, and let x be an element of E. We say that x is fixed under T if and only if:

(Def. 12) For every element s of S holds $x = (T \cap s)(x)$.

Let S be a unital non empty groupoid, let E be a set, and let T be a left operation of S on E. The functor T_0 yields a subset of E and is defined by:

 $(\text{Def. 13}) \quad T_0 = \begin{cases} \{x; x \text{ ranges over elements of } E: x \text{ is fixed under } T\}, \\ \text{ if } E \text{ is non empty,} \\ \emptyset_E, \text{ otherwise.} \end{cases}$

MARCO RICCARDI

Let S be a unital non empty groupoid, let E be a set, let T be a left operation of S on E, and let x, y be elements of E. We say that x and y are conjugated under T if and only if:

(Def. 14) There exists an element s of S such that $y = (T \cap s)(x)$.

We now state three propositions:

- (4) Let S be a unital non empty groupoid, E be a non empty set, x be an element of E, and T be a left operation of S on E. Then x and x are conjugated under T.
- (5) Let G be a group, E be a non empty set, x, y be elements of E, and T be a left operation of G on E. Suppose x and y are conjugated under T. Then y and x are conjugated under T.
- (6) Let S be a unital non empty groupoid, E be a non empty set, x, y, z be elements of E, and T be a left operation of S on E. Suppose x and y are conjugated under T and y and z are conjugated under T. Then x and z are conjugated under T.

Let S be a unital non empty groupoid, let E be a non empty set, let T be a left operation of S on E, and let x be an element of E. The functor T(x) yields a subset of E and is defined as follows:

(Def. 15) $T(x) = \{y; y \text{ ranges over elements of } E: x \text{ and } y \text{ are conjugated under } T\}.$

One can prove the following four propositions:

- (7) Let S be a unital non empty groupoid, E be a non empty set, x be an element of E, and T be a left operation of S on E. Then T(x) is non empty.
- (8) Let G be a group, E be a non empty set, x, y be elements of E, and T be a left operation of G on E. Then T(x) misses T(y) or T(x) = T(y).
- (9) Let S be a unital non empty groupoid, E be a non empty finite set, x be an element of E, and T be a left operation of S on E. If x is fixed under T, then T(x) = {x}.
- (10) Let G be a group, E be a non empty set, a be an element of E, and T be a left operation of G on E. Then $\overline{\overline{T(a)}} = |\bullet: T_a|$.

Let G be a group, let E be a non empty set, and let T be a left operation of G on E. The orbits of T yields a partition of E and is defined by:

(Def. 16) The orbits of $T = \{X; X \text{ ranges over subsets of } E: \bigvee_{x:\text{element of } E} X = T(x)\}.$

3. p-groups

Let p be a prime natural number and let G be a group. We say that G is a p-group if and only if:

162

(Def. 17) There exists a natural number r such that $\operatorname{ord}(G) = p^r$.

Let p be a prime natural number, let G be a group, and let P be a subgroup of G. We say that P is a p-group if and only if:

- (Def. 18) There exists a finite group H such that P = H and H is a p-group. One can prove the following proposition
 - (11) Let *E* be a non empty finite set, *G* be a finite group, *p* be a prime natural number, and *T* be a left operation of *G* on *E*. If *G* is a *p*-group, then card $T_0 \mod p = \operatorname{card} E \mod p$.

4. The Sylow Theorems

Let p be a prime natural number, let G be a group, and let P be a subgroup of G. We say that P is a Sylow p-subgroup if and only if:

(Def. 19) P is a p-group and $p \nmid |\bullet: P|_{\mathbb{N}}$.

We now state three propositions:

- (12) For every finite group G and for every prime natural number p holds there exists a subgroup of G which is a Sylow p-subgroup.
- (13) Let G be a finite group and p be a prime natural number. If $p \mid \operatorname{ord}(G)$, then there exists an element g of G such that $\operatorname{ord}(g) = p$.
- (14) Let G be a finite group and p be a prime natural number. Then
 - (i) for every subgroup H of G such that H is a p-group there exists a subgroup P of G such that P is a Sylow p-subgroup and H is a subgroup of P, and
 - (ii) for all subgroups P_1 , P_2 of G such that P_1 is a Sylow p-subgroup and P_2 is a Sylow p-subgroup holds P_1 and P_2 are conjugated.

Let G be a group and let p be a prime natural number. The functor $Syl_p(G)$ yielding a subset of SubGrG is defined as follows:

(Def. 20) $Syl_p(G) = \{H; H \text{ ranges over elements of SubGr} G:$

 $\bigvee_{P: \text{ strict subgroup of } G} (P = H \land P \text{ is a Sylow } p\text{-subgroup}) \}.$

Let G be a finite group and let p be a prime natural number. Note that $\mathsf{Syl}_p(G)$ is non empty and finite.

Let G be a finite group, let p be a prime natural number, let H be a subgroup of G, and let h be an element of H. The functor $\gamma_{h,p}$ yielding a function from $Syl_p(G)$ into $Syl_p(G)$ is defined by the condition (Def. 21).

(Def. 21) Let P_1 be an element of $\text{Syl}_p(G)$. Then there exists an element P_2 of $\text{Syl}_p(G)$ and there exist strict subgroups H_1 , H_2 of G and there exists an element g of G such that $P_2 = \gamma_{h,p}(P_1)$ and $P_1 = H_1$ and $P_2 = H_2$ and $h^{-1} = g$ and $H_2 = H_1^g$.

Let G be a finite group, let p be a prime natural number, and let H be a subgroup of G. The functor $\Gamma_{H,p}$ yields a left operation of H on $Syl_p(G)$ and is defined as follows:

(Def. 22) For every element h of H holds $\Gamma_{H,p}(h) = \gamma_{h,p}$.

The following proposition is true

(15) For every finite group G and for every prime natural number p holds $\operatorname{card}(\operatorname{Syl}_p(G)) \mod p = 1$ and $\operatorname{card}(\operatorname{Syl}_p(G)) \mid \operatorname{ord}(G)$.

5. Appendix

The following propositions are true:

- (16) For all non empty sets X, Y holds $\overline{\{[X, \{y\}] : y \text{ ranges over elements of } Y\}} = \overline{\overline{Y}}.$
- (17) For all natural numbers n, m, r and for every prime natural number p such that $n = p^r \cdot m$ and $p \nmid m$ holds $\binom{n}{p^r} \mod p \neq 0$.
- (18) For every natural number n such that n > 0 holds $\operatorname{ord}(\mathbb{Z}_n^+) = n$.
- (19) For every group G and for every non empty subset A of G and for every element g of G holds $\overline{\overline{A}} = \overline{\overline{A \cdot g}}$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- 2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [4] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989.
- [5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529–536, 1990.
- [6] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
 [10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized
- Mathematics, 1(4):661–668, 1990.
- [11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [12] Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217–225, 1998.
- [13] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887–890, 1990.
 [14] D.G. Katakara, K. K. Katakara, K. Katak
- [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829–832, 1990.
- [15] Karol Pak. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399–406, 2005.
- [16] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441–444, 1990.

- [17] Dariusz Surowik. Cyclic groups and some of their properties part I. Formalized Math*ematics*, 2(**5**):623–627, 1991.
- Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [18]
- [19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
- [21] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [22] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathemat*ics*, 1(5):955–962, 1990.
- [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [24] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
- [25] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.
 [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received August 13, 2007