Definition and some Properties of Information Entropy

Bo Zhang
Shinshu University
Nagano, Japan

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Summary. In this article we mainly define the information entropy [3], [11] and prove some its basic properties. First, we discuss some properties on four kinds of transformation functions between vector and matrix. The transformation functions are LineVec 2 Mx , ColVec 2 Mx , Vec2DiagMx and Mx2FinS. Mx2FinS is a horizontal concatenation operator for a given matrix, treating rows of the given matrix as finite sequences, yielding a new finite sequence by horizontally joining each row of the given matrix in order to index. Then we define each concept of information entropy for a probability sequence and two kinds of probability matrices, joint and conditional, that are defined in article [25]. Further, we discuss some properties of information entropy including Shannon's lemma, maximum property, additivity and super-additivity properties.

MML identifier: ENTROPY1, version: 7.8.05 4.84.971

The papers [21], [23], [1], [20], [24], [6], [14], [8], [4], [22], [17], [7], [9], [2], [5], [15], [16], [12], [10], [13], [18], [25], and [19] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we use the following convention: D denotes a non empty set, i, j, k, l denote elements of \mathbb{N}, n denotes a natural number, a, b, c, r, r_{1}, r_{2} denote real numbers, p, q denote finite sequences of elements of \mathbb{R}, and M_{1}, M_{2} denote matrices over \mathbb{R}.

Next we state several propositions:
(1) If $k \neq 0$ and $i<l$ and $l \leq j$ and $k \mid l$, then $i \div k<j \div k$.
(2) If $r>0$, then $\left(\log _{-}(e)\right)(r) \leq r-1$ and $r=1$ iff $\left(\log _{-}(e)\right)(r)=r-1$ and $r \neq 1$ iff $\left(\log _{-}(e)\right)(r)<r-1$.
(3) If $r>0$, then $\log _{e} r \leq r-1$ and $r=1$ iff $\log _{e} r=r-1$ and $r \neq 1$ iff $\log _{e} r<r-1$.
(4) If $a>1$ and $b>1$, then $\log _{a} b>0$.
(5) If $a>0$ and $a \neq 1$ and $b>0$, then $-\log _{a} b=\log _{a}\left(\frac{1}{b}\right)$.
(6) If $a>0$ and $a \neq 1$ and $b \geq 0$ and $c \geq 0$, then $b \cdot c \cdot \log _{a}(b \cdot c)=$ $b \cdot c \cdot \log _{a} b+b \cdot c \cdot \log _{a} c$.
(7) Let q, q_{1}, q_{2} be finite sequences of elements of \mathbb{R}. Suppose len $q_{1}=\operatorname{len} q$ and len $q_{1}=\operatorname{len} q_{2}$ and for every k such that $k \in \operatorname{dom} q_{1}$ holds $q(k)=$ $q_{1}(k)+q_{2}(k)$. Then $\sum q=\sum q_{1}+\sum q_{2}$.
(8) Let q, q_{1}, q_{2} be finite sequences of elements of \mathbb{R}. Suppose $\operatorname{len} q_{1}=\operatorname{len} q$ and $\operatorname{len} q_{1}=\operatorname{len} q_{2}$ and for every k such that $k \in \operatorname{dom} q_{1}$ holds $q(k)=$ $q_{1}(k)-q_{2}(k)$. Then $\sum q=\sum q_{1}-\sum q_{2}$.
(9) Suppose len $p \geq 1$. Then there exists q such that len $q=\operatorname{len} p$ and $q(1)=$ $p(1)$ and for every k such that $0 \neq k$ and $k<\operatorname{len} p$ holds $q(k+1)=$ $q(k)+p(k+1)$ and $\sum p=q(\operatorname{len} p)$.
Let us consider p. Let us observe that p is non-negative if and only if:
(Def. 1) For every i such that $i \in \operatorname{dom} p$ holds $p(i) \geq 0$.
Let us note that there exists a finite sequence of elements of \mathbb{R} which is non-negative.

The following proposition is true
(10) If p is non-negative and $r \geq 0$, then $r \cdot p$ is non-negative.

Let us consider p, k. We say that p has only one value in k if and only if:
(Def. 2) $k \in \operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ and $i \neq k$ holds $p(i)=0$.
Next we state four propositions:
(11) If p has only one value in k and $i \neq k$, then $p(i)=0$.
(12) If len $p=\operatorname{len} q$ and p has only one value in k, then $p \bullet q$ has only one value in k and $(p \bullet q)(k)=p(k) \cdot q(k)$.
(13) If p has only one value in k, then $\sum p=p(k)$.
(14) If p is non-negative, then for every k such that $k \in \operatorname{dom} p$ and $p(k)=\sum p$ holds p has only one value in k.
Let us observe that every finite sequence of elements of \mathbb{R} which is finite probability distribution is also non empty and non-negative.

One can prove the following propositions:
(15) Let p be finite probability distribution finite sequence of elements of \mathbb{R} and given k such that $k \in \operatorname{dom} p$ and $p(k)=1$. Then p has only one value in k.
(16) Let i be a non empty natural number. Then $i \mapsto \frac{1}{i}$ is finite probability distribution finite sequence of elements of \mathbb{R}.
One can check that every matrix over \mathbb{R} which is summable-to- 1 is also non empty yielding and every matrix over \mathbb{R} which is joint probability is also non empty yielding.

The following propositions are true:
(17) For every matrix M over \mathbb{R} such that $M=\emptyset$ holds SumAll $M=0$.
(18) For every matrix M over D and for every i such that $i \in \operatorname{dom} M$ holds $\operatorname{dom} M(i)=\operatorname{Seg}$ width M.
(19) $\quad M_{1}$ is nonnegative iff for every i such that $i \in \operatorname{dom} M_{1}$ holds Line $\left(M_{1}, i\right)$ is non-negative.

2. Properties of Transformations between Vector and Matrix

Next we state four propositions:
(20) For every j such that $j \in \operatorname{dom} p$ holds (LineVec $2 \mathrm{Mx} p)_{\square, j}=\langle p(j)\rangle$.
(21) Let p be a non empty finite sequence of elements of \mathbb{R}, q be a finite sequence of elements of \mathbb{R}, and M be a matrix over \mathbb{R}. Then $M=\operatorname{ColVec} 2 \mathrm{Mx} p \cdot \operatorname{LineVec} 2 \mathrm{Mx} q$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} M=\operatorname{len} p$,
(ii) width $M=\operatorname{len} q$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of M holds $M_{i, j}=p(i) \cdot q(j)$.
(22) Let p be a non empty finite sequence of elements of \mathbb{R}, q be a finite sequence of elements of \mathbb{R}, and M be a matrix over \mathbb{R}. Then $M=\operatorname{ColVec} 2 \mathrm{Mx} p \cdot$ LineVec2Mx q if and only if the following conditions are satisfied:
(i) $\operatorname{len} M=\operatorname{len} p$,
(ii) width $M=\operatorname{len} q$, and
(iii) for every i such that $i \in \operatorname{dom} M$ holds Line $(M, i)=p(i) \cdot q$.
(23) Let p, q be finite probability distribution finite sequences of elements of \mathbb{R}. Then ColVec $2 \mathrm{Mx} p$. LineVec $2 \mathrm{Mx} q$ is joint probability.
Let us consider n and let M_{1} be a matrix over \mathbb{R} of dimension n. We say that M_{1} is diagonal if and only if:
(Def. 3) For all i, j such that $\langle i, j\rangle \in$ the indices of M_{1} and $\left(M_{1}\right)_{i, j} \neq 0$ holds $i=j$.
Let us consider n. Observe that there exists a matrix over \mathbb{R} of dimension n which is diagonal.

The following proposition is true
(24) Let M_{1} be a matrix over \mathbb{R} of dimension n. Then M_{1} is diagonal if and only if for every i such that $i \in \operatorname{dom} M_{1}$ holds Line $\left(M_{1}, i\right)$ has only one value in i.
Let us consider p. The functor Vec2DiagMx p yielding a diagonal matrix over \mathbb{R} of dimension len p is defined as follows:
(Def. 4) For every j such that $j \in \operatorname{dom} p$ holds $(\operatorname{Vec} 2 \operatorname{DiagMx} p)_{j, j}=p(j)$.
One can prove the following propositions:
(25) $\quad M_{1}=\operatorname{Vec} 2 \operatorname{DiagMx} p$ iff len $M_{1}=\operatorname{len} p$ and width $M_{1}=\operatorname{len} p$ and for every i such that $i \in \operatorname{dom} M_{1}$ holds Line $\left(M_{1}, i\right)$ has only one value in i and $\operatorname{Line}\left(M_{1}, i\right)(i)=p(i)$.
(26) Suppose len $p=\operatorname{len} M_{1}$. Then $M_{2}=\operatorname{Vec} 2 \operatorname{DiagMx} p \cdot M_{1}$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} M_{2}=\operatorname{len} p$,
(ii) width $M_{2}=\operatorname{width} M_{1}$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of M_{2} holds $\left(M_{2}\right)_{i, j}=p(i)$. $\left(M_{1}\right)_{i, j}$.
(27) If len $p=\operatorname{len} M_{1}$, then $M_{2}=\operatorname{Vec} 2 \operatorname{DiagMx} p \cdot M_{1}$ iff len $M_{2}=\operatorname{len} p$ and width $M_{2}=$ width M_{1} and for every i such that $i \in \operatorname{dom} M_{2}$ holds Line $\left(M_{2}, i\right)=p(i) \cdot \operatorname{Line}\left(M_{1}, i\right)$.
(28) Let p be finite probability distribution finite sequence of elements of \mathbb{R} and M be a non empty yielding conditional probability matrix over \mathbb{R}. If len $p=\operatorname{len} M$, then Vec2DiagMx $p \cdot M$ is joint probability.
(29) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k) \wedge M(k+1)$. Let given k. If $k \in \operatorname{dom} p$, then len $p(k)=k \cdot$ width M.
(30) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=\operatorname{len} M$ and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k)^{\wedge} M(k+1)$. Let given i, j. If $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $i \leq j$, then $\operatorname{dom} p(i) \subseteq \operatorname{dom} p(j)$.
(31) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<\operatorname{len} M$ holds $p(k+1)=p(k)^{\wedge} M(k+1)$. Then len $p(1)=\operatorname{width} M$ and for every j such that $\langle 1, j\rangle \in$ the indices of M holds $j \in \operatorname{dom} p(1)$ and $p(1)(j)=M_{1, j}$.
(32) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=\operatorname{len} M$ and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<\operatorname{len} M$ holds $p(k+1)=p(k) \wedge M(k+1)$. Let given j. If $j \geq 1$ and $j<\operatorname{len} p$, then for every l such that $l \in \operatorname{dom} p(j)$ holds $p(j)(l)=p(j+1)(l)$.
(33) Let M be a matrix over D and p be a finite sequence of elements of D^{*}.

Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k)^{\wedge} M(k+1)$. Let given i, j. Suppose $i \in \operatorname{dom} p$ and $j \in \operatorname{dom} p$ and $i \leq j$. Let given l. If $l \in \operatorname{dom} p(i)$, then $p(i)(l)=p(j)(l)$.
(34) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=\operatorname{len} M$ and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k) \frown M(k+1)$. Let given j. Suppose $j \geq 1$ and $j<\operatorname{len} p$. Let given l. If $l \in \operatorname{Seg}$ width M, then $j \cdot$ width $M+l \in \operatorname{dom} p(j+1)$ and $p(j+1)(j \cdot$ width $M+l)=M(j+1)(l)$.
(35) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k) \frown M(k+1)$. Let given i, j. Suppose $\langle i, j\rangle \in$ the indices of M. Then $(i-1) \cdot$ width $M+j \in \operatorname{dom} p(i)$ and $M_{i, j}=p(i)((i-1) \cdot$ width $M+j)$.
(36) Let M be a matrix over D and p be a finite sequence of elements of D^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k)^{\wedge} M(k+1)$. Let given i, j. Suppose $\langle i, j\rangle \in$ the indices of M. Then $(i-1) \cdot$ width $M+j \in \operatorname{dom} p(\operatorname{len} M)$ and $M_{i, j}=p(\operatorname{len} M)((i-1) \cdot$ width $M+j)$.
(37) Let M be a matrix over \mathbb{R} and p be a finite sequence of elements of \mathbb{R}^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k)^{\frown} M(k+1)$. Let given k. If $k \geq 1$ and $k<$ len M, then $\sum p(k+1)=\sum p(k)+\sum M(k+1)$.
(38) Let M be a matrix over \mathbb{R} and p be a finite sequence of elements of \mathbb{R}^{*}. Suppose len $p=$ len M and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k) \frown M(k+1)$. Then SumAll $M=$ $\sum p(\operatorname{len} M)$.
Let D be a non empty set and let M be a matrix over D. The functor Mx2FinS M yields a finite sequence of elements of D and is defined by:
(Def. 5)(i) $\quad \mathrm{Mx} 2$ FinS $M=\emptyset$ if len $M=0$,
(ii) there exists a finite sequence p of elements of D^{*} such that Mx2FinS $M=p(\operatorname{len} M)$ and len $p=\operatorname{len} M$ and $p(1)=M(1)$ and for every k such that $k \geq 1$ and $k<$ len M holds $p(k+1)=p(k)^{\wedge} M(k+1)$, otherwise.
We now state several propositions:
(39) For every matrix M over D holds len Mx2FinS $M=\operatorname{len} M \cdot$ width M.
(40) Let M be a matrix over D and given i, j. If $\langle i, j\rangle \in$ the indices of M, then $(i-1) \cdot$ width $M+j \in \operatorname{dom} \operatorname{Mx} 2 F i n S ~ M$ and $M_{i, j}=(\operatorname{Mx} 2 \operatorname{FinS} M)((i-$ 1) \cdot width $M+j)$.
(41) Let M be a matrix over D and given k, l. Suppose $k \in \operatorname{dom} \operatorname{Mx} 2 \mathrm{FinS} M$
and $l=k-1$. Then $\langle(l \div$ width $M)+1,(l \bmod$ width $M)+1\rangle \in$ the indices of M and $(\operatorname{Mx} 2 F i n S ~ M)(k)=M_{(l \div \text { width } M)+1,(l \bmod \text { width } M)+1}$.
(42) SumAll $M_{1}=\sum \operatorname{Mx} 2 F i n S M_{1}$.
(43) $\quad M_{1}$ is nonnegative iff Mx2FinS M_{1} is non-negative.
(44) M_{1} is joint probability iff $\mathrm{Mx} 2 \mathrm{FinS} M_{1}$ is finite probability distribution.
(45) Let p, q be finite probability distribution finite sequences of elements of \mathbb{R}. Then Mx2FinS(ColVec2Mx $p \cdot \operatorname{LineVec} 2 \mathrm{Mx} q$) is finite probability distribution.
(46) Let p be finite probability distribution finite sequence of elements of \mathbb{R} and M be a non empty yielding conditional probability matrix over \mathbb{R}. If len $p=\operatorname{len} M$, then $\operatorname{Mx} 2 \operatorname{FinS}(\operatorname{Vec} 2 \operatorname{DiagMx} p \cdot M)$ is finite probability distribution.

3. Information Entropy

Let us consider a, p. Let us assume that $a>0$ and $a \neq 1$ and p is nonnegative. The functor $\overrightarrow{\log }_{a} p$ yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def. 6) len $\overrightarrow{\log }_{a} p=\operatorname{len} p$ and for every k such that $k \in \operatorname{dom} \overrightarrow{\log }_{a} p$ holds if $p(k)>0$, then $\left(\overrightarrow{\log }_{a} p\right)(k)=\log _{a} p(k)$ and if $p(k)=0$, then $\left(\overrightarrow{\log }_{a} p\right)(k)=0$.
Let us consider p. The functor id $\log p$ yields a finite sequence of elements of \mathbb{R} and is defined by:
(Def. 7) $\quad \overrightarrow{\mathrm{id} \log } p=p \bullet \overrightarrow{\log }_{2} p$.
The following propositions are true:
(47) Let p be a non-negative finite sequence of elements of \mathbb{R} and given q. Then $q=\overrightarrow{\mathrm{id} \log } p$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} q=\operatorname{len} p$, and
(ii) for every k such that $k \in \operatorname{dom} q$ holds $q(k)=p(k) \cdot \log _{2} p(k)$.
(48) Let p be a non-negative finite sequence of elements of \mathbb{R} and given k such that $k \in \operatorname{dom} p$. Then
(i) if $p(k)=0$, then $(\overrightarrow{\mathrm{id} \log p} p(k)=0$, and
(ii) if $p(k)>0$, then $(\overline{\mathrm{id} \log p})(k)=p(k) \cdot \log _{2} p(k)$.
(49) Let p be a non-negative finite sequence of elements of \mathbb{R} and given q. Then $q=-\overrightarrow{\mathrm{id} \log p}$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} q=\operatorname{len} p$, and
(ii) for every k such that $k \in \operatorname{dom} q$ holds $q(k)=p(k) \cdot \log _{2}\left(\frac{1}{p(k)}\right)$.
(50) Let p be a non-negative finite sequence of elements of \mathbb{R}. Suppose $r_{1} \geq 0$ and $r_{2} \geq 0$. Let given i. If $i \in \operatorname{dom} p$ and $p(i)=r_{1} \cdot r_{2}$, then $(\overrightarrow{\mathrm{id} \mathrm{log} p})(i)=$ $r_{1} \cdot r_{2} \cdot \log _{2} r_{1}+r_{1} \cdot r_{2} \cdot \log _{2} r_{2}$.
(51) For every non-negative finite sequence p of elements of \mathbb{R} such that $r \geq 0$ holds $\overrightarrow{\mathrm{id} \log } r \cdot p=r \cdot \log _{2} r \cdot p+r \cdot\left(p \bullet \overrightarrow{\log }_{2} p\right)$.
(52) Let p be a non empty finite probability distribution finite sequence of elements of \mathbb{R} and given k. If $k \in \operatorname{dom} p$, then $(\overrightarrow{\mathrm{id} \log p})(k) \leq 0$.
Let us consider M_{1}. Let us assume that M_{1} is nonnegative. The functor $\overrightarrow{\operatorname{id} \log } M_{1}$ yields a matrix over \mathbb{R} and is defined as follows:
(Def. 8) len $\overrightarrow{\mathrm{id} \log } M_{1}=$ len M_{1} and width $\overrightarrow{\mathrm{id} \log } M_{1}=$ width M_{1} and for ev$\xrightarrow{\text { ery }} k$ such that $k \in$ dom $\overrightarrow{\operatorname{id} \log } M_{1}$ holds $\left(\overrightarrow{\mathrm{id} \log } M_{1}\right)(k)=\operatorname{Line}\left(M_{1}, k\right) \bullet$ $\overrightarrow{\log }_{2} \operatorname{Line}\left(M_{1}, k\right)$.
The following two propositions are true:
(53) For every nonnegative matrix M over \mathbb{R} and for every k such that $k \in$ dom M holds Line $(\overrightarrow{\mathrm{id} \log } M, k)=\overrightarrow{\mathrm{id} \log } \operatorname{Line}(M, k)$.
(54) Let M be a nonnegative matrix over \mathbb{R} and M_{3} be a matrix over \mathbb{R}. Then $M_{3}=\stackrel{\mathrm{id} \log }{\longrightarrow} M$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} M_{3}=\operatorname{len} M$,
(ii) width $M_{3}=$ width M, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of M_{3} holds $\left(M_{3}\right)_{i, j}=M_{i, j}$. $\log _{2}\left(M_{i, j}\right)$.
Let p be a finite sequence of elements of \mathbb{R}. The functor Entropy p yields a real number and is defined by:
(Def. 9) Entropy $p=-\sum \overrightarrow{\mathrm{id} \log } p$.
We now state several propositions:
(55) For every non empty finite probability distribution finite sequence p of elements of \mathbb{R} holds Entropy $p \geq 0$.
(56) Let p be a non empty finite probability distribution finite sequence of elements of \mathbb{R}. If there exists k such that $k \in \operatorname{dom} p$ and $p(k)=1$, then Entropy $p=0$.
(57) Let p, q be non empty finite probability distribution finite sequences of elements of \mathbb{R} and p_{1}, q_{3} be finite sequences of elements of \mathbb{R}. Suppose that
(i) $\operatorname{len} p=\operatorname{len} q$,
(ii) $\operatorname{len} p_{1}=\operatorname{len} p$,
(iii) $\operatorname{len} q_{3}=\operatorname{len} q$, and
(iv) for every k such that $k \in \operatorname{dom} p$ holds $p(k)>0$ and $q(k)>0$ and $p_{1}(k)=-p(k) \cdot \log _{2} p(k)$ and $q_{3}(k)=-p(k) \cdot \log _{2} q(k)$.
Then
(v) $\quad \sum p_{1} \leq \sum q_{3}$,
(vi) for every k such that $k \in \operatorname{dom} p$ holds $p(k)=q(k)$ iff $\sum p_{1}=\sum q_{3}$, and
(vii) there exists k such that $k \in \operatorname{dom} p$ and $p(k) \neq q(k)$ iff $\sum p_{1}<\sum q_{3}$.
(58) Let p be a non empty finite probability distribution finite sequence of elements of \mathbb{R}. Suppose that for every k such that $k \in \operatorname{dom} p$ holds $p(k)>$ 0 . Then
(i) Entropy $p \leq \log _{2} \operatorname{len} p$,
(ii) for every k such that $k \in \operatorname{dom} p$ holds $p(k)=\frac{1}{\operatorname{len} p}$ iff Entropy $p=$ $\log _{2}$ len p, and
(iii) there exists k such that $k \in \operatorname{dom} p$ and $p(k) \neq \frac{1}{\operatorname{len} p}$ iff Entropy $p<$ $\log _{2}$ len p.
(59) $\xrightarrow{\text { For }}$ every nonnegative matrix M over \mathbb{R} holds $\mathrm{Mx} 2 \mathrm{FinS} \overrightarrow{\mathrm{id} \log } M=$ $\overrightarrow{\text { id } \log } \mathrm{Mx} 2$ FinS M.
(60) Let p, q be finite probability distribution finite sequences of elements of \mathbb{R} and M be a matrix over \mathbb{R}. If $M=\operatorname{ColVec} 2 \mathrm{Mx} p \cdot \operatorname{LineVec} 2 \mathrm{Mx} q$, then SumAll $\overrightarrow{\mathrm{id} \log } M=\sum \overrightarrow{\mathrm{id} \log } p+\sum \overrightarrow{\mathrm{id} \log } q$.
Let us consider M_{1}. The entropy of joint probability of M_{1} yields a real number and is defined as follows:
(Def. 10) The entropy of joint probability of $M_{1}=$ Entropy Mx2FinS M_{1}.
Next we state the proposition
(61) Let p, q be finite probability distribution finite sequences of elements of \mathbb{R}. Then the entropy of joint probability of ColVec $2 \mathrm{Mx} p \cdot \operatorname{LineVec} 2 \mathrm{Mx} q=$ Entropy $p+$ Entropy q.
Let us consider M_{1}. The entropy of conditional probability of M_{1} yields a finite sequence of elements of \mathbb{R} and is defined by the conditions (Def. 11).
(Def. 11)(i) len (the entropy of conditional probability of M_{1}) = len M_{1}, and
(ii) for every k such that $k \in \operatorname{dom}(t h e ~ e n t r o p y ~ o f ~ c o n d i t i o n a l ~ p r o b a b i l-~$ ity of M_{1}) holds (the entropy of conditional probability of $\left.M_{1}\right)(k)=$ Entropy Line $\left(M_{1}, k\right)$.

One can prove the following propositions:
(62) Let M be a non empty yielding conditional probability matrix over \mathbb{R} and p be a finite sequence of elements of \mathbb{R}. Then $p=$ the entropy of conditional probability of M if and only if $\operatorname{len} p=\operatorname{len} M$ and for every k such that $k \in \operatorname{dom} p$ holds $p(k)=-\sum(\overrightarrow{\mathrm{id} \log } M)(k)$.
(63) Let M be a non empty yielding conditional probability matrix over \mathbb{R}. Then the entropy of conditional probability of $M=-$ LineSum $\overrightarrow{\mathrm{id} \log } M$.
(64) Let p be finite probability distribution finite sequence of elements of \mathbb{R} and M be a non empty yielding conditional probability matrix over \mathbb{R}. Suppose len $p=$ len M. Let M_{3} be a matrix over \mathbb{R}. If $M_{3}=\operatorname{Vec} 2$ DiagMx $p \cdot M$, then SumAll $\overrightarrow{\mathrm{id} \log } M_{3}=\sum \overrightarrow{\mathrm{id} \log p+\sum(p \bullet}$ LineSum $\overrightarrow{\mathrm{id} \log } M$).
(65) Let p be finite probability distribution finite sequence of elements of \mathbb{R} and M be a non empty yielding conditional probability matrix over
\mathbb{R}. Suppose len $p=$ len M. Then the entropy of joint probability of Vec2DiagMx $p \cdot M=$ Entropy $p+\sum(p \bullet$ the entropy of conditional probability of M).

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] P. Billingsley. Ergodic Theory and Information. John Wiley \& Sons, 1964.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwat. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[11] Shigeichi Hirasawa. Information Theory. Baifukan CO., 1996.
[12] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[15] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[16] Yatsuka Nakamura, Nobuyuki Tamaura, and Wenpai Chang. A theory of matrices of real elements. Formalized Mathematics, 14(1):21-28, 2006.
[17] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[18] Konrad Raczkowski and Andrzej Nȩdzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[19] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Bo Zhang and Yatsuka Nakamura. The definition of finite sequences and matrices of probability, and addition of matrices of real elements. Formalized Mathematics, 14(3):101108, 2006.

Received July 9, 2007

