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Summary. In the paper I construct the configuration G which is a partial

linear space. It consists of k-element subsets of some base set as points and

(k + 1)-element subsets as lines. The incidence is given by inclusion. I also

introduce automorphisms of partial linear spaces and show that automorphisms

of G are generated by permutations of the base set.
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The articles [15], [17], [3], [14], [7], [11], [13], [8], [18], [19], [4], [12], [16], [9], [5],

[6], [10], [2], and [1] provide the notation and terminology for this paper.

1. Preliminaries

We follow the rules: k, n denote elements of N and X, Y , Z denote sets.

One can prove the following propositions:

(1) For all sets a, b such that a 6= b and a = n and b = n holds a ∩ b < n

and n+ 1 ≤ a ∪ b.
(2) For all sets a, b such that a = n+ k and b = n+ k holds a ∩ b = n iff

a ∪ b = n+ 2 · k.
(3) X ≤ Y iff there exists a function f such that f is one-to-one and

X ⊆ dom f and f ◦X ⊆ Y.
(4) For every function f such that f is one-to-one and X ⊆ dom f holds

f◦X = X .

(5) If X \ Y = X \ Z and Y ⊆ X and Z ⊆ X, then Y = Z.

(6) Let Y be a non empty set and p be a function from X into Y . Suppose

p is one-to-one. Let x1, x2 be subsets of X. If x1 6= x2, then p◦x1 6= p◦x2.

27
c© 2007 University of Bia lystok

ISSN 1426–2630



28 andrzej owsiejczuk

(7) Let a, b, c be sets such that a = n− 1 and b = n− 1 and c = n− 1 and

a ∩ b = n− 2 and a ∩ c = n− 2 and b ∩ c = n− 2 and 2 ≤ n. Then

(i) if 3 ≤ n, then a ∩ b ∩ c = n−2 and a ∪ b ∪ c = n+1 or a ∩ b ∩ c = n−3

and a ∪ b ∪ c = n, and

(ii) if n = 2, then a ∩ b ∩ c = n− 2 and a ∪ b ∪ c = n+ 1.

(8) Let P1, P2 be projective incidence structures. Suppose the projective

incidence structure of P1 = the projective incidence structure of P2. Let

A1 be a point of P1 and A2 be a point of P2. Suppose A1 = A2. Let L1

be a line of P1 and L2 be a line of P2. If L1 = L2, then if A1 lies on L1,

then A2 lies on L2.

(9) Let P1, P2 be projective incidence structures. Suppose the projective

incidence structure of P1 = the projective incidence structure of P2. Let

A1 be a subset of the points of P1 and A2 be a subset of the points of

P2. Suppose A1 = A2. Let L1 be a line of P1 and L2 be a line of P2. If

L1 = L2, then if A1 lies on L1, then A2 lies on L2.

Let us note that there exists a projective incidence structure which is linear,

up-2-rank, and strict and has non-trivial-lines.

2. Configuration G

A partial linear space is an up-2-rank projective incidence structure with

non-trivial-lines.

Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k + 1 ≤ X . The functor Gk(X) yields a strict partial linear space

and is defined by the conditions (Def. 1).

(Def. 1)(i) The points of Gk(X) = {A;A ranges over subsets of X: A = k},
(ii) the lines of Gk(X) = {L;L ranges over subsets of X: L = k + 1}, and

(iii) the incidence of Gk(X) = ⊆
2X ∩ [: the points of Gk(X), the lines of

Gk(X) :].

One can prove the following four propositions:

(10) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let A be a point of Gk(X) and L be a line of Gk(X). Then

A lies on L if and only if A ⊆ L.
(11) For every element k of N and for every non empty set X such that 0 < k

and k + 1 ≤ X holds Gk(X) is Vebleian.

(12) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 1 ≤ X . Let A1, A2, A3, A4, A5, A6 be points of Gk(X) and L1,

L2, L3, L4 be lines of Gk(X). Suppose that A1 lies on L1 and A2 lies on

L1 and A3 lies on L2 and A4 lies on L2 and A5 lies on L1 and A5 lies on
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L2 and A1 lies on L3 and A3 lies on L3 and A2 lies on L4 and A4 lies on

L4 and A5 does not lie on L3 and A5 does not lie on L4 and L1 6= L2 and

L3 6= L4. Then there exists a point A6 of Gk(X) such that A6 lies on L3

and A6 lies on L4 and A6 = A1 ∩A2 ∪A3 ∩A4.

(13) For every element k of N and for every non empty set X such that 0 < k

and k + 1 ≤ X holds Gk(X) is Desarguesian.

Let S be a projective incidence structure and let K be a subset of the points

of S. We say that K is a clique if and only if:

(Def. 2) For all points A, B of S such that A ∈ K and B ∈ K there exists a line

L of S such that {A,B} lies on L.

Let S be a projective incidence structure and let K be a subset of the points

of S. We say that K is a maximal-clique if and only if:

(Def. 3) K is a clique and for every subset U of the points of S such that U is a

clique and K ⊆ U holds U = K.

Let k be an element of N, let X be a non empty set, and let T be a subset

of the points of Gk(X). We say that T is a star if and only if:

(Def. 4) There exists a subset S of X such that S = k− 1 and T = {A;A ranges

over subsets of X: A = k ∧ S ⊆ A}.
We say that T is a top if and only if:

(Def. 5) There exists a subset S of X such that S = k+ 1 and T = {A;A ranges

over subsets of X: A = k ∧ A ⊆ S}.
Next we state two propositions:

(14) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k and

k + 2 ≤ X . Let K be a subset of the points of Gk(X). If K is a star or a

top, then K is a maximal-clique.

(15) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k

and k + 2 ≤ X . Let K be a subset of the points of Gk(X). If K is a

maximal-clique, then K is a star or a top.

3. Automorphisms

Let S1, S2 be projective incidence structures. We consider maps between

projective spaces S1 and S2 as systems

〈 a point-map, a line-map 〉,
where the point-map is a function from the points of S1 into the points of S2

and the line-map is a function from the lines of S1 into the lines of S2.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let a be a point of S1. The functor F (a) yields a

point of S2 and is defined as follows:
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(Def. 6) F (a) = (the point-map of F )(a).

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let L be a line of S1. The functor F (L) yields a

line of S2 and is defined by:

(Def. 7) F (L) = (the line-map of F )(L).

Next we state the proposition

(16) Let S1, S2 be projective incidence structures and F1, F2 be maps between

projective spaces S1 and S2. Suppose for every pointA of S1 holds F1(A) =

F2(A) and for every line L of S1 holds F1(L) = F2(L). Then the map of

F1 = the map of F2.

Let S1, S2 be projective incidence structures and let F be a map between

projective spaces S1 and S2. We say that F preserves incidence strongly if and

only if:

(Def. 8) For every point A1 of S1 and for every line L1 of S1 holds A1 lies on L1

iff F (A1) lies on F (L1).

The following proposition is true

(17) Let S1, S2 be projective incidence structures and F1, F2 be maps between

projective spaces S1 and S2. Suppose the map of F1 = the map of F2. If

F1 preserves incidence strongly, then F2 preserves incidence strongly.

Let S be a projective incidence structure and let F be a map between pro-

jective spaces S and S. We say that F is automorphism if and only if:

(Def. 9) The line-map of F is bijective and the point-map of F is bijective and

F preserves incidence strongly.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let K be a subset of the points of S1. The functor

F ◦K yielding a subset of the points of S2 is defined by:

(Def. 10) F ◦K = (the point-map of F )◦K.

Let S1, S2 be projective incidence structures, let F be a map between pro-

jective spaces S1 and S2, and let K be a subset of the points of S2. The functor

F−1(K) yielding a subset of the points of S1 is defined as follows:

(Def. 11) F−1(K) = (the point-map of F )−1(K).

Let X be a set and let A be a finite set. The functor ↑(A,X) yielding a

subset of 2X is defined as follows:

(Def. 12) ↑(A,X) = {B;B ranges over subsets of X: B = cardA+ 1 ∧ A ⊆ B}.
Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k + 1 ≤ X . Let A be a finite set. Let us assume that A = k − 1

and A ⊆ X. The functor ↑(A,X, k) yields a subset of the points of Gk(X) and

is defined as follows:

(Def. 13) ↑(A,X, k) = ↑(A,X).
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The following propositions are true:

(18) Let S1, S2 be projective incidence structures, F be a map between pro-

jective spaces S1 and S2, and K be a subset of the points of S1. Then

F ◦K = {B;B ranges over points of S2:
∨
A : point of S1

(A ∈ K ∧ F (A) =

B)}.
(19) Let S1, S2 be projective incidence structures, F be a map between

projective spaces S1 and S2, and K be a subset of the points of S2.

Then F−1(K) = {A;A ranges over points of S1:
∨
B : point of S2

(B ∈
K ∧ F (A) = B)}.

(20) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. If F preserves

incidence strongly and K is a clique, then F ◦K is a clique.

(21) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. Suppose F preserves

incidence strongly and the line-map of F is onto and K is a clique. Then

F−1(K) is a clique.

(22) Let S be a projective incidence structure, F be a map between projective

spaces S and S, and K be a subset of the points of S. Suppose F is

automorphism and K is a maximal-clique. Then F ◦K is a maximal-clique

and F−1(K) is a maximal-clique.

(23) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k and

k+ 2 ≤ X . Let F be a map between projective spaces Gk(X) and Gk(X).

Suppose F is automorphism. Let K be a subset of the points of Gk(X).

If K is a star, then F ◦K is a star and F−1(K) is a star.

Let k be an element of N and let X be a non empty set. Let us assume that

0 < k and k+1 ≤ X . Let s be a permutation ofX. The functor incprojmap(k, s)

yielding a strict map between projective spaces Gk(X) and Gk(X) is defined as

follows:

(Def. 14) For every point A of Gk(X) holds (incprojmap(k, s))(A) = s◦A and for

every line L of Gk(X) holds (incprojmap(k, s))(L) = s◦L.

One can prove the following propositions:

(24) Let k be an element of N and X be a non empty set. Suppose k = 1

and k + 1 ≤ X . Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(25) Let k be an element of N and X be a non empty set. Suppose 1 < k

and X = k + 1. Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(26) Let k be an element of N and X be a non empty set. Suppose 0 < k
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and k + 1 ≤ X . Let T be a subset of the points of Gk(X) and S be a

subset of X. If S = k − 1 and T = {A;A ranges over subsets of X:

A = k ∧ S ⊆ A}, then S =
⋂
T.

(27) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k+ 1 ≤ X . Let T be a subset of the points of Gk(X). Suppose T is a

star. Let S be a subset of X. If S =
⋂
T, then S = k− 1 and T = {A;A

ranges over subsets of X: A = k ∧ S ⊆ A}.
(28) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let T1, T2 be subsets of the points of Gk(X). If T1 is a star

and T2 is a star and
⋂
T1 =

⋂
T2, then T1 = T2.

(29) Let k be an element of N and X be a non empty set. Suppose 0 < k and

k + 1 ≤ X . Let A be a finite subset of X. If A = k − 1, then ↑(A,X, k)

is a star.

(30) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 1 ≤ X . Let A be a finite subset of X. If A = k − 1, then⋂ ↑(A,X, k) = A.

(31) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 3 ≤ X . Let F be a map between projective spaces G(k+1)(X)

and G(k+1)(X). Suppose F is automorphism. Then there exists a map H

between projective spaces Gk(X) and Gk(X) such that

(i) H is automorphism,

(ii) the line-map of H = the point-map of F , and

(iii) for every point A of Gk(X) and for every finite set B such that B = A

holds H(A) =
⋂

(F ◦ ↑(B,X, k + 1)).

(32) Let k be an element of N and X be a non empty set. Suppose 0 < k

and k + 3 ≤ X . Let F be a map between projective spaces G(k+1)(X)

and G(k+1)(X). Suppose F is automorphism. Let H be a map between

projective spaces Gk(X) and Gk(X). Suppose that

(i) H is automorphism,

(ii) the line-map of H = the point-map of F , and

(iii) for every point A of Gk(X) and for every finite set B such that B = A

holds H(A) =
⋂

(F ◦ ↑(B,X, k + 1)).

Let f be a permutation of X. If the map of H = incprojmap(k, f), then

the map of F = incprojmap(k + 1, f).

(33) Let k be an element of N and X be a non empty set. Suppose 2 ≤ k

and k + 2 ≤ X . Let F be a map between projective spaces Gk(X) and

Gk(X). Suppose F is automorphism. Then there exists a permutation s

of X such that the map of F = incprojmap(k, s).

(34) Let k be an element of N and X be a non empty set. Suppose 0 < k
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and k + 1 ≤ X . Let s be a permutation of X. Then incprojmap(k, s) is

automorphism.

(35) Let X be a non empty set. Suppose 0 < k and k+1 ≤ X . Let F be a map

between projective spaces Gk(X) and Gk(X). Then F is automorphism

if and only if there exists a permutation s of X such that the map of

F = incprojmap(k, s).
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