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Summary. In this paper I present basic properties of the determinant of

square matrices over a field and selected properties of the sign of a permutation.

First, I define the sign of a permutation by the requirement

sgn(p) =
Y

1≤i<j≤n
sgn(p(j)− p(i)),

where p is any fixed permutation of a set with n elements. I prove that the sign

of a product of two permutations is the same as the product of their signs and

show the relation between signs and parity of permutations. Then I consider the

determinant of a linear combination of lines, the determinant of a matrix with

permutated lines and the determinant of a matrix with a repeated line. Finally,

at the end I prove that the determinant of a product of two square matrices is

equal to the product of their determinants.
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1. The Sign of a Permutation

For simplicity, we use the following convention: x, X denote sets, i, j, k, l,

n, m denote natural numbers, D denotes a non empty set, K denotes a field, a, b

denote elements of K, p1, p, q denote elements of the permutations of n-element

set, P1, P denote permutations of Seg n, F denotes a function from Seg n into

Seg n, p2, p3, q2, p4 denote elements of the permutations of (n+ 2)-element set,

and P2 denotes a permutation of Seg(n+ 2).

Let X be a set. We introduce 2SetX as a synonym of TwoElementSets(X).

The following three propositions are true:

(1) X ∈ 2Set Seg n iff there exist i, j such that i ∈ Seg n and j ∈ Seg n and

i < j and X = {i, j}.
(2) 2Set Seg 0 = ∅ and 2Set Seg 1 = ∅.
(3) For every n such that n ≥ 2 holds {1, 2} ∈ 2Set Seg n.

Let us consider n. Observe that 2Set Seg(n+ 2) is non empty and finite.

Let us consider n, x and let p1 be an element of the permutations of n-

element set. Note that p1(x) is natural.

Let us consider K. One can verify that the multiplication of K is unital and

the multiplication of K is associative.

Let us consider n, K and let p2 be an element of the permutations of (n+2)-

element set. The functor Part-sgn(p2,K) yielding a function from 2Set Seg(n+2)

into the carrier of K is defined by the condition (Def. 1).

(Def. 1) Let i, j be elements of N such that i ∈ Seg(n + 2) and j ∈ Seg(n + 2)

and i < j. Then

(i) if p2(i) < p2(j), then (Part-sgn(p2,K))({i, j}) = 1K , and

(ii) if p2(i) > p2(j), then (Part-sgn(p2,K))({i, j}) = −1K .

One can prove the following proposition

(4) Let X be an element of Fin 2Set Seg(n+2). Suppose that for every x such

that x ∈ X holds (Part-sgn(p3,K))(x) = 1K . Then (the multiplication of

K)-
∑

X Part-sgn(p3,K) = 1K .

In the sequel s denotes an element of 2Set Seg(n+ 2).

The following propositions are true:

(5) (Part-sgn(p3,K))(s) = 1K or (Part-sgn(p3,K))(s) = −1K .

(6) For all i, j such that i ∈ Seg(n + 2) and j ∈ Seg(n + 2) and i < j

and p3(i) = q2(i) and p3(j) = q2(j) holds (Part-sgn(p3,K))({i, j}) =

(Part-sgn(q2,K))({i, j}).
(7) Let X be an element of Fin 2Set Seg(n + 2), given p3, q2, and F be

a finite set such that F = {s : s ∈ X ∧ (Part-sgn(p3,K))(s) 6=
(Part-sgn(q2,K))(s)}. Then
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(i) if cardFmod2 = 0, then (the multiplication ofK)-
∑

X Part-sgn(p3,K) =

(the multiplication of K)-
∑

X Part-sgn(q2,K), and

(ii) if cardFmod2 = 1, then (the multiplication ofK)-
∑

X Part-sgn(p3,K) =

−((the multiplication of K)-
∑

X Part-sgn(q2,K)).

(8) Let P be a permutation of Seg n. Suppose P is a transposition. Let given

i, j. Suppose i < j. Then P (i) = j if and only if the following conditions

are satisfied:

(i) i ∈ domP,

(ii) j ∈ domP,

(iii) P (i) = j,

(iv) P (j) = i, and

(v) for every k such that k 6= i and k 6= j and k ∈ domP holds P (k) = k.

(9) Let given p3, q2, p4, i, j. Suppose p4 = p3 · q2 and q2 is a transpo-

sition and q2(i) = j and i < j. Let given s. If (Part-sgn(p3,K))(s) 6=
(Part-sgn(p4,K))(s), then i ∈ s or j ∈ s.

(10) Let given p3, q2, p4, i, j, K. Suppose p4 = p3 ·q2 and q2 is a transposition

and q2(i) = j and i < j and 1K 6= −1K . Then

(i) (Part-sgn(p3,K))({i, j}) 6= (Part-sgn(p4,K))({i, j}), and

(ii) for every k such that k ∈ Seg(n + 2) and i 6= k and

j 6= k holds (Part-sgn(p3,K))({i, k}) 6= (Part-sgn(p4,K))({i, k}) iff

(Part-sgn(p3,K))({j, k}) 6= (Part-sgn(p4,K))({j, k}).
Let us consider n, K and let p2 be an element of the permutations of (n+2)-

element set. The functor sgn(p2,K) yielding an element of K is defined by:

(Def. 2) sgn(p2,K) = (the multiplication of K)-
∑

Ωf
2Set Seg(n+2)

Part-sgn(p2,K).

The following propositions are true:

(11) sgn(p3,K) = 1K or sgn(p3,K) = −1K .

(12) For every element I1 of the permutations of (n+2)-element set such that

I1 = idseq(n+ 2) holds sgn(I1,K) = 1K .

(13) For all p3, q2, p4 such that p4 = p3 · q2 and q2 is a transposition holds

sgn(p4,K) = −sgn(p3,K).

(14) For every element t1 of the permutations of (n+2)-element set such that

t1 is a transposition holds sgn(t1,K) = −1K .

(15) Let P be a finite sequence of elements of An+2 and p3 be an element of

the permutations of (n+ 2)-element set such that p3 =
∏
P and for every

i such that i ∈ domP there exists an element t2 of the permutations of

(n+ 2)-element set such that P (i) = t2 and t2 is a transposition. Then

(i) if lenP mod 2 = 0, then sgn(p3,K) = 1K , and

(ii) if lenP mod 2 = 1, then sgn(p3,K) = −1K .

(16) Let given i, j, n. Suppose i < j and i ∈ Segn and j ∈ Segn. Then there

exists an element t1 of the permutations of n-element set such that t1 is a
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transposition and t1(i) = j.

(17) Let p be an element of the permutations of (k+ 1)-element set. Suppose

p(k + 1) 6= k + 1. Then there exists an element t1 of the permutations of

(k+ 1)-element set such that t1 is a transposition and t1(p(k+ 1)) = k+ 1

and (t1 · p)(k + 1) = k + 1.

(18) Let given X, x. Suppose x /∈ X. Let p5 be a permutation of X ∪ {x}. If

p5(x) = x, then there exists a permutation p of X such that p5�X = p.

(19) Let p, q be permutations of X and p5, q1 be permutations of X ∪{x}. If

p5�X = p and q1�X = q and p5(x) = x and q1(x) = x, then (p5 · q1)�X =

p · q and (p5 · q1)(x) = x.

(20) For every element t1 of the permutations of k-element set such that t1
is a transposition holds t1 · t1 = idseq(k) and t1 = t1

−1.

(21) Let given p1. Then there exists a finite sequence P of elements of An
such that

(i) p1 =
∏
P, and

(ii) for every i such that i ∈ domP there exists an element t2 of the

permutations of n-element set such that P (i) = t2 and t2 is a transposition.

(22) K is Fanoian iff 1K 6= −1K .

(23) For every Fanoian field K holds p2 is even iff sgn(p2,K) = 1K and p2 is

odd iff sgn(p2,K) = −1K .

(24) For all p3, q2, p4 such that p4 = p3 · q2 holds sgn(p4,K) = sgn(p3,K) ·
sgn(q2,K).

(25) p is even and q is even or p is odd and q is odd iff p · q is even.

(26) (−1)sgn(p2)a = sgn(p2,K) · a.
(27) For every element t1 of the permutations of (n+2)-element set such that

t1 is a transposition holds t1 is odd.

Let us consider n. Observe that there exists a permutation of Seg(n + 2)

which is odd.

2. The Determinant of a Linear Combination of Lines

For simplicity, we follow the rules: p6 denotes a finite sequence of elements

of D, M denotes a matrix over D of dimension n × m, p7, q3 denote finite

sequences of elements of K, and A, B denote matrices over K of dimension n.

Let us consider l, n, m, D, let M be a matrix over D of dimension n×m, and

let p6 be a finite sequence of elements of D. The functor ReplaceLine(M, l, p6)

yields a matrix over D of dimension n × m and is defined as follows:

(Def. 3)(i) len ReplaceLine(M, l, p6) = lenM and width ReplaceLine(M, l, p6) =

widthM and for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds
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if i 6= l, then (ReplaceLine(M, l, p6))i,j = Mi,j and if i = l, then

(ReplaceLine(M, l, p6))l,j = p6(j) if len p6 = widthM,

(ii) ReplaceLine(M, l, p6) = M, otherwise.

Let us consider l, n, m, D, let M be a matrix over D of dimension n × m,

and let p6 be a finite sequence of elements of D. We introduce RLine(M, l, p6)

as a synonym of ReplaceLine(M, l, p6).

The following propositions are true:

(28) For all l, M , p6, i such that i ∈ Seg n holds if i = l and

len p6 = widthM, then Line(RLine(M, l, p6), i) = p6 and if i 6= l, then

Line(RLine(M, l, p6), i) = Line(M, i).

(29) For all M , p6 such that len p6 = widthM and for every element p′ of D∗

such that p6 = p′ holds RLine(M, l, p6) = Replace(M, l, p′).

(30) M = RLine(M, l,Line(M, l)).

(31) Let given l, p7, q3, p1. Suppose l ∈ Seg n and len p7 = n and

len q3 = n. Let M be a matrix over K of dimension n. Then (the mul-

tiplication of K) ~ (p1 -Path RLine(M, l, a · p7 + b · q3)) = a · ((the mul-

tiplication of K)~ (p1 -Path RLine(M, l, p7))) + b · ((the multiplication of

K)~ (p1 -Path RLine(M, l, q3))).

(32) Let given l, p7, q3, p1. Suppose l ∈ Seg n and len p7 = n and len q3 =

n. Let M be a matrix over K of dimension n. Then (the product on

paths of RLine(M, l, a · p7 + b · q3))(p1) = a · (the product on paths of

RLine(M, l, p7))(p1) + b · (the product on paths of RLine(M, l, q3))(p1).

(33) Let given l, p7, q3. Suppose l ∈ Seg n and len p7 = n and len q3 = n. Let

M be a matrix over K of dimension n. Then Det RLine(M, l, a·p7+b·q3) =

a · Det RLine(M, l, p7) + b ·Det RLine(M, l, q3).

(34) If l ∈ Segn and len p7 = n, then Det RLine(A, l, a · p7) = a ·
Det RLine(A, l, p7).

(35) If l ∈ Seg n, then Det RLine(A, l, a · Line(A, l)) = a · DetA.

(36) If l ∈ Segn and len p7 = n and len q3 = n, then Det RLine(A, l, p7 +q3) =

Det RLine(A, l, p7) + Det RLine(A, l, q3).

3. The Determinant of a Matrix with Permutated Lines and with

a Repeated Line

Let us consider n, m, D, let F be a function from Seg n into Seg n, and let

M be a matrix over D of dimension n × m. Then M · F is a matrix over D of

dimension n × m and it can be characterized by the condition:

(Def. 4) len(M ·F ) = lenM and width(M ·F ) = widthM and for all i, j, k such

that 〈〈i, j〉〉 ∈ the indices of M and F (i) = k holds (M · F )i,j = Mk,j.

The following propositions are true:
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(37)(i) The indices of M = the indices of M · F, and

(ii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M there exists k such that

F (i) = k and 〈〈k, j〉〉 ∈ the indices of M and (M · F )i,j = Mk,j.

(38) For every matrix M over D of dimension n × m and for every F and

for every k such that k ∈ Seg n holds Line(M · F, k) = M(F (k)).

(39) M · idseq(n) = M.

(40) For all p, P1, q such that q = p·P1
−1 holds p -PathA·P1 = (q -PathA)·P1.

(41) For all p, P1, q such that q = p · P1
−1 holds (the multiplication of

K)~ (p -PathA · P1) = (the multiplication of K)~ (q -PathA).

(42) For all p3, q2 such that q2 = p3
−1 holds sgn(p3,K) = sgn(q2,K).

(43) Let M be a matrix over K of dimension n+2 and given p2, P2. Suppose

p2 = P2. Let given p3, q2. Suppose q2 = p3 · P2
−1. Then (the product on

paths of M)(q2) = sgn(p2,K) · (the product on paths of M · P2)(p3).

(44) Let given p1. Then there exists a permutation P of the permutations

of n-element set such that for every element p of the permutations of

n-element set holds P (p) = p · p1.

(45) For every matrix M over K of dimension n+ 2 × n+ 2 and for all p2,

P2 such that p2 = P2 holds Det(M · P2) = sgn(p2,K) · DetM.

(46) For every matrix M over K of dimension n and for all p1, P1 such that

p1 = P1 holds Det(M · P1) = (−1)sgn(p1) DetM.

(47) Let P3 be a permutation of the permutations of n-element set and given

p1. If p1 is odd and for every p holds P3(p) = p · p1, then P3
◦{p : p is

even} = {q : q is odd}.
(48) Let given n. Suppose n ≥ 2. Then there exist finite sets O1, E1 such

that E1 = {p : p is even} and O1 = {q : q is odd} and E1 ∩ O1 = ∅ and

E1 ∪O1 = the permutations of n-element set and cardE1 = cardO1.

(49) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n and i < j. Let M be a

matrix over K of dimension n. Suppose Line(M, i) = Line(M, j). Let p,

q, t1 be elements of the permutations of n-element set. Suppose q = p · t1
and t1 is a transposition and t1(i) = j. Then (the product on paths of

M)(q) = −(the product on paths of M)(p).

(50) Let given i, j. Suppose i ∈ Seg n and j ∈ Seg n and i < j. Let M

be a matrix over K of dimension n. If Line(M, i) = Line(M, j), then

DetM = 0K .

(51) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds

Det RLine(A, i,Line(A, j)) = 0K .

(52) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds

Det RLine(A, i, a · Line(A, j)) = 0K .

(53) For all i, j such that i ∈ Seg n and j ∈ Seg n and i 6= j holds DetA =
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Det RLine(A, i,Line(A, i) + a · Line(A, j)).

(54) If F /∈ the permutations of n-element set, then Det(A · F ) = 0K .

4. The Determinant of a Product of Two Square Matrices

Let K be a non empty loop structure. The functor addFinSK yielding a

binary operation on (the carrier of K)∗ is defined as follows:

(Def. 5) For all elements p5, p3 of (the carrier of K)∗ holds (addFinSK)(p5,

p3) = p5 + p3.

LetK be an Abelian non empty loop structure. One can verify that addFinSK

is commutative.

Let K be an add-associative non empty loop structure. Note that addFinSK

is associative.

The following propositions are true:

(55) Let A, B be matrices over K. Suppose widthA = lenB and lenB > 0.

Let given i. Suppose i ∈ Seg lenA. Then there exists a finite sequence P

of elements of (the carrier of K)∗ such that lenP = lenB and Line(A ·
B, i) = addFinSK � P and for every j such that j ∈ Seg lenB holds

P (j) = Ai,j · Line(B, j).

(56) Let A, B, C be matrices over K of dimension n and given i. Sup-

pose i ∈ Seg n. Then there exists a finite sequence P of elements of

K such that lenP = n and Det RLine(C, i,Line(A · B, i)) = the ad-

dition of K � P and for every j such that j ∈ Seg n holds P (j) =

Ai,j · Det RLine(C, i,Line(B, j)).

(57) Let X be a set, Y be a non empty set, and given x. Suppose x /∈ X.
Then there exists a function B1 from [: Y X , Y :] into Y X∪{x} such that

(i) B1 is bijective, and

(ii) for every function f from X into Y and for every function F from

X ∪ {x} into Y such that F �X = f holds B1(〈〈f, F (x)〉〉) = F.

(58) Let X be a finite set, Y be a non empty finite set, and given x. Suppose

x /∈ X. Let F be a binary operation on D. Suppose F is commutative and

associative and has a unity and an inverse operation. Let f be a function

from Y X into D and g be a function from Y X∪{x} into D. Suppose that for

every function H from X into Y and for every element S1 of Fin(Y X∪{x})
such that S1 = {h;h ranges over functions from X∪{x} into Y : h�X = H}
holds F -

∑
S1
g = f(H). Then F -

∑
Ωf
Y X

f = F -
∑

Ωf

Y X∪{x}
g.

(59) Let A, B be matrices over D of dimension n × m and given i. Suppose

i ≤ n and 0 < n. Let F be a function from Seg i into Seg n. Then there

exists a matrix M over D of dimension n × m such that M = A+·(B ·
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(idseq(n)+·F ))� Seg i and for every j holds if j ∈ Seg i, then M(j) =

B(F (j)) and if j /∈ Seg i, then M(j) = A(j).

(60) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then there

exists a function P from (Seg n)Seg n into the carrier of K such that

(i) for every function F from Seg n into Seg n there exists a finite sequence

P4 of elements of K such that lenP4 = n and for all natural numbers F1, j

such that j ∈ Segn and F1 = F (j) holds P4(j) = Aj,F1 and P (F ) = ((the

multiplication of K)~ (P4)) · Det(B · F ), and

(ii) Det(A · B) = (the addition of K)-
∑

Ωf
(Seg n)Seg n

P.

(61) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then

there exists a function P from the permutations of n-element set into the

carrier of K such that

(i) Det(A · B) = (the addition of K)-
∑

Ωf
the permutations of n-element set

P, and

(ii) for every element p1 of the permutations of n-element set holds P (p1) =

((the multiplication of K)~ (p1 -PathA)) · (−1)sgn(p1) DetB.

(62) For all matrices A, B over K of dimension n such that 0 < n holds

Det(A · B) = DetA · DetB.
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[5] Czes law Byliński. Binary operations applied to finite sequences. Formalized Mathematics,

1(4):643–649, 1990.
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