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Basic Properties of Determinants
of Square Matrices over a Field!
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Summary. In this paper I present basic properties of the determinant of
square matrices over a field and selected properties of the sign of a permutation.
First, I define the sign of a permutation by the requirement

sen(p) =[] sen(p(4) — p(9)),

1<i<j<n

where p is any fixed permutation of a set with n elements. I prove that the sign
of a product of two permutations is the same as the product of their signs and
show the relation between signs and parity of permutations. Then I consider the
determinant of a linear combination of lines, the determinant of a matrix with
permutated lines and the determinant of a matrix with a repeated line. Finally,
at the end I prove that the determinant of a product of two square matrices is
equal to the product of their determinants.
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1. THE SIGN OF A PERMUTATION

For simplicity, we use the following convention: x, X denote sets, i, j, k, [,
n, m denote natural numbers, D denotes a non empty set, K denotes a field, a, b
denote elements of K, p1, p, ¢ denote elements of the permutations of n-element
set, P;, P denote permutations of Segn, F' denotes a function from Segn into
Segn, p2, P3, g2, p4 denote elements of the permutations of (n + 2)-element set,
and P, denotes a permutation of Seg(n + 2).
Let X be a set. We introduce 2Set X as a synonym of TwoElementSets(X).
The following three propositions are true:
(1) X € 2Set Segn iff there exist 4, j such that i € Segn and j € Segn and
i<jand X ={i,j}.
(2) 2SetSeg0 = 0 and 2Set Seg1 = 0.
(3) For every n such that n > 2 holds {1,2} € 2Set Segn.

Let us consider n. Observe that 2Set Seg(n + 2) is non empty and finite.

Let us consider n, z and let p; be an element of the permutations of n-
element set. Note that p;(z) is natural.

Let us consider K. One can verify that the multiplication of K is unital and
the multiplication of K is associative.

Let us consider n, K and let py be an element of the permutations of (n+2)-
element set. The functor Part-sgn(p2, K) yielding a function from 2Set Seg(n+2)
into the carrier of K is defined by the condition (Def. 1).

(Def. 1) Let 4, j be elements of N such that i € Seg(n + 2) and j € Seg(n + 2)
and ¢ < j. Then

(i) if pa(i) < p2(4), then (Part-sgn(pe, K))({i,j}) = 1k, and

(i) if pa(i) > p2(j), then (Part-sgn(py, K))({i,j}) = —1xk.

One can prove the following proposition

(4) Let X be an element of Fin 2Set Seg(n+2). Suppose that for every = such
that x € X holds (Part-sgn(ps, K))(z) = 1x. Then (the multiplication of
K)->" y Part-sgn(ps, K) = 1.

In the sequel s denotes an element of 2Set Seg(n + 2).
The following propositions are true:

(5) (Part-sgn(ps, K))(s) = 1 or (Part-sgn(ps, K))(s) = —1k.

(6) For all 4, j such that i € Seg(n + 2) and j € Seg(n +2) and i < j
and p3(i) = g2(i) and p3(j) = ga2(j) holds (Part-sgn(ps, K))({i,j}) =
(Part-sgn(qz, K)) ({7, j})-

(7) Let X be an element of Fin2Set Seg(n + 2), given ps, g2, and F be
a finite set such that FF = {s : s € X A (Part-sgn(ps, K))(s) #
(Part-sgn(g2, K))(s)}. Then
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(i) if card Fmod2 = 0, then (the multiplication of K)- >y Part-sgn(ps, K) =
(the multiplication of K)-)" y Part-sgn(gs, K), and
(ii) ifcard Fmod2 = 1, then (the multiplication of K)- )y Part-sgn(ps, K) =
—((the multiplication of K)- )y Part-sgn(go, K)).
(8) Let P be a permutation of Segn. Suppose P is a transposition. Let given
i, j. Suppose i < j. Then P(i) = j if and only if the following conditions
are satisfied:

(i) iedomP,
(ii) j€domP,
(i) )=
(iv)  P(j) =1, and
(v)  for every k such that k # i and k # j and k € dom P holds P(k) = k.

(9) Let given ps, g2, pa, i, j. Suppose py = p3 - g2 and ¢o is a transpo-
sition and ¢2(7) = j and i < j. Let given s. If (Part-sgn(ps, K))(s) #
(Part-sgn(p4, K))(s), then i € s or j € s.

(10) Let given ps3, g2, p4, i, j, K. Suppose ps = p3-q2 and g2 is a transposition
and (i) = j and i < j and 1x # —1k. Then

() (Part-sgn(ps, K))({i,}) # (Part-sgn(ps, K))({i,7}), and

(ii)  for every k such that k& € Seg(n + 2) and ¢ # k and
j # k holds (Part-sgn(ps, K))({i,k}) # (Part-sgn(ps, K))({i,k}) iff
(Part-sgn(ps, K))({j, k}) # (Part-sgn(pa, K))({j, k}).

Let us consider n, K and let py be an element of the permutations of (n+2)-

element set. The functor sgn(ps, K) yielding an element of K is defined by:

(Def. 2) sgn(pe, K) = (the multiplication of K)- s Part-sgn(pe, K).

2Set Seg(n+2)
The following propositions are true:
(11) sgn(ps, K) = 1k or sgn(ps, K) = 1.
(12) For every element I; of the permutations of (n+2)-element set such that
I = idseq(n + 2) holds sgn(/;, K) = 1k.
(13) For all p3, g2, psa such that py = p3 - g2 and ¢ is a transposition holds
sgn(ps, K) = —sgn(ps, K).
(14) For every element ¢; of the permutations of (n+ 2)-element set such that
t1 is a transposition holds sgn(tq, K) = —1x.
(15) Let P be a finite sequence of elements of A, 12 and p3 be an element of
the permutations of (n + 2)-element set such that pg = [[ P and for every
i such that ¢ € dom P there exists an element ¢y of the permutations of
(n + 2)-element set such that P(i) = to and ¢ is a transposition. Then
(i) if len Pmod 2 = 0, then sgn(ps, K) = 1x, and
(ii)  if len P mod 2 = 1, then sgn(ps, K) = —1x.
(16) Let given 4, j, n. Suppose i < j and i € Segn and j € Segn. Then there
exists an element ¢1 of the permutations of n-element set such that 1 is a
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transposition and ¢;(i) = j.

(17) Let p be an element of the permutations of (k + 1)-element set. Suppose
p(k + 1) # k + 1. Then there exists an element ¢; of the permutations of
(k+1)-element set such that ¢; is a transposition and t1(p(k+1)) = k+1
and (t1-p)(k+1)=k+1.

(18) Let given X, x. Suppose x ¢ X. Let ps be a permutation of X U {x}. If
ps(x) = x, then there exists a permutation p of X such that p5[X = p.

(19) Let p, ¢ be permutations of X and ps, g1 be permutations of X U {x}. If
ps] X =pand ¢1[X = ¢ and ps(z) = x and ¢1(z) = z, then (p5 - q1)] X =
p-qand (ps - q1)(x) = .

(20) For every element ¢; of the permutations of k-element set such that t;
is a transposition holds t1 - t; = idseq(k) and t; = ¢; 1.

(21) Let given p;. Then there exists a finite sequence P of elements of A,
such that

(i) p1=]IP and
(ii)  for every ¢ such that ¢ € dom P there exists an element to of the
permutations of n-element set such that P(i) = t2 and ¢5 is a transposition.

(22) K is Fanoian iff 15 # —1k.

(23) For every Fanoian field K holds ps is even iff sgn(pe, K) = 1x and po is
odd iff sgn(p2, K) = —1k.

(24) For all p3, g2, ps such that py = p3 - g2 holds sgn(py, K) = sgn(ps, K) -
sgn(gz, K).

(25) pis even and ¢ is even or p is odd and ¢ is odd iff p - ¢ is even.

(26) (—1)%"(P2)g = sgn(py, K) - a.

(27) For every element ¢; of the permutations of (n+ 2)-element set such that
t1 is a transposition holds ¢; is odd.

Let us consider n. Observe that there exists a permutation of Seg(n + 2)
which is odd.

2. THE DETERMINANT OF A LINEAR COMBINATION OF LINES

For simplicity, we follow the rules: pg denotes a finite sequence of elements
of D, M denotes a matrix over D of dimension n X m, p7, g3 denote finite
sequences of elements of K, and A, B denote matrices over K of dimension n.

Let us consider [, n, m, D, let M be a matrix over D of dimension n X m, and
let pg be a finite sequence of elements of D. The functor ReplaceLine(M, [, pg)
yields a matrix over D of dimension n X m and is defined as follows:

(Def. 3)(i) lenReplaceLine(M, 1, ps) = len M and width ReplaceLine(M, [, pg) =
width M and for all 4, j such that (i, j) € the indices of M holds
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if i # [, then (ReplaceLine(M,l,p¢));; = M;; and if ¢ = [, then
(ReplaceLine(M, 1, p¢))1,; = pe(j) if lenpg = width M,

(ii) ReplaceLine(M,l,pg) = M, otherwise.

Let us consider [, n, m, D, let M be a matrix over D of dimension n x m,
and let pg be a finite sequence of elements of D. We introduce RLine(M, I, pg)
as a synonym of ReplaceLine(M, 1, p¢).

The following propositions are true:

(28) For all I, M, pg, i such that i € Segn holds if ¢ = [ and
lenpg = width M, then Line(RLine(M,l,pg),7) = ps and if i # [, then
Line(RLine(M, 1, pg), i) = Line(M, ).

(29) For all M, pg such that len pg = width M and for every element p’ of D*
such that pg = p’ holds RLine(M, [, pg) = Replace(M,1,p").

(30) M = RLine(M, I, Line(M,1)).

(31) Let given I, p7, g3, pi. Suppose | € Segn and lenp; = n and
lengs = n. Let M be a matrix over K of dimension n. Then (the mul-
tiplication of K) ® (p; -Path RLine(M,l,a - p7 +b-gq3)) = a - ((the mul-
tiplication of K) ® (p; -Path RLine(M, [, p7))) + b - ((the multiplication of
K) ® (p1 -Path RLine(M, 1, g3))).

(32) Let given I, p7, g3, p1. Suppose | € Segn and lenpy = n and lengz =
n. Let M be a matrix over K of dimension n. Then (the product on
paths of RLine(M,l,a - p7 +b-q3))(p1) = a - (the product on paths of
RLine(M, 1, p7))(p1) + b - (the product on paths of RLine(M, 1, q3))(p1).

(33) Let given [, p7, g3. Suppose [ € Segn and len p; = n and len gz = n. Let
M be a matrix over K of dimension n. Then Det RLine(M, [, a-p7+b-q3) =
a - Det RLine(M, 1, p7) + b - Det RLine(M, 1, q3).

(34) If I € Segn and lenp; = n, then DetRLine(A,l,a - p7) = a -
Det RLine(A, [, p7).

(35) 1If [ € Segn, then Det RLine(A, [, a - Line(A,l)) = a - Det A.

(36) Ifl € Segn and len p; = n and len g3 = n, then Det RLine(A, [, p7+q3) =
Det RLine(A, [, p7) + Det RLine(A, [, g3).

3. THE DETERMINANT OF A MATRIX WITH PERMUTATED LINES AND WITH
A REPEATED LINE

Let us consider n, m, D, let F' be a function from Segn into Segn, and let
M be a matrix over D of dimension n x m. Then M - F' is a matrix over D of
dimension n X m and it can be characterized by the condition:
(Def. 4) len(M - F) = len M and width(M - F') = width M and for all 7, j, k such
that (i, j) € the indices of M and F(i) = k holds (M - F); j; = My, ;.

The following propositions are true:
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(37)(1)  The indices of M = the indices of M - F, and
(ii)  for all 4, j such that (i, j) € the indices of M there exists k such that
F(i) = k and (k, j) € the indices of M and (M - F); j = My, ;.
(38) For every matrix M over D of dimension n x m and for every F' and

for every k such that k € Segn holds Line(M - F, k) = M (F(k)).
(39) M -idseq(n) = M.
(40) For all p, Py, g such that ¢ = p-P;~! holds p-Path A-P; = (q-Path A)-P;.
(41) For all p, P, q such that ¢ = p- P;~! holds (the multiplication of
K)® (p-Path A - P;) = (the multiplication of K) ® (¢-Path A).
(42) For all p3, go such that go = p3~! holds sgn(ps, K) = sgn(qa, K).

(43) Let M be a matrix over K of dimension n+ 2 and given ps, P». Suppose
p2 = P,. Let given p3, go. Suppose gz = p3 - P~ 1. Then (the product on
paths of M)(g2) = sgn(p2, K) - (the product on paths of M - Py)(ps).

(44) Let given p;. Then there exists a permutation P of the permutations
of n-element set such that for every element p of the permutations of
n-element set holds P(p) =p - p;.

(45) For every matrix M over K of dimension n + 2 x n + 2 and for all ps,
P, such that py = P, holds Det(M - P;) = sgn(pg, K) - Det M.

(46) For every matrix M over K of dimension n and for all p;, P; such that
p1 = Py holds Det(M - Py) = (—1)%"®1) Det M.

(47) Let P3 be a permutation of the permutations of n-element set and given
p1. If py is odd and for every p holds Ps(p) = p - p1, then Ps°{p : p is
even} = {q : ¢ is odd}.

(48) Let given n. Suppose n > 2. Then there exist finite sets O, E; such
that 1 = {p: pis even} and O = {¢ : ¢ is odd} and E; N O = ) and
FE1 U O = the permutations of n-element set and card E7 = card O;.

(49) Let given ¢, j. Suppose i € Segn and j € Segn and i < j. Let M be a
matrix over K of dimension n. Suppose Line(M,i) = Line(M, j). Let p,
q, t1 be elements of the permutations of n-element set. Suppose ¢ = p - t1
and t; is a transposition and (i) = j. Then (the product on paths of
M)(q) = —(the product on paths of M)(p).

(50) Let given ¢, j. Suppose i € Segn and j € Segn and i < j. Let M
be a matrix over K of dimension n. If Line(M,i) = Line(M,j), then
Det M = 0g.

(51) For all 4, j such that ¢ € Segn and j € Segn and i # j holds
Det RLine(A, i, Line(4, j)) = Ok

(52) For all 4, j such that ¢ € Segn and j € Segn and i # j holds
Det RLine(A, i, a - Line(A4, j)) = Ok.

(53) For all i, j such that i € Segn and j € Segn and ¢ # j holds Det A =
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Det RLine(A, i, Line(A, ) + a - Line(A4, j)).
(54) If F' ¢ the permutations of n-element set, then Det(A - F) = 0.

4. THE DETERMINANT OF A PRODUCT OF TWO SQUARE MATRICES

Let K be a non empty loop structure. The functor addFinS K yielding a

binary operation on (the carrier of K)* is defined as follows:
(Def. 5) For all elements ps, ps of (the carrier of K)* holds (addFinS K)(ps,
p3) = ps + p3.

Let K be an Abelian non empty loop structure. One can verify that addFinS K
is commutative.

Let K be an add-associative non empty loop structure. Note that addFinS K
is associative.

The following propositions are true:

(55) Let A, B be matrices over K. Suppose width A = len B and len B > 0.
Let given i. Suppose i € Seglen A. Then there exists a finite sequence P
of elements of (the carrier of K)* such that len P = len B and Line(A4 -
B,i) = addFinS K ® P and for every j such that j € Seglen B holds
P(]) = Ai,j . Llne(B,j)

(56) Let A, B, C be matrices over K of dimension n and given i. Sup-
pose i € Segn. Then there exists a finite sequence P of elements of
K such that len P = n and Det RLine(C,i,Line(A - B,i)) = the ad-
dition of K ® P and for every j such that j € Segn holds P(j) =
A; j - Det RLine(C, 4, Line(B, 7)).

(57) Let X be a set, Y be a non empty set, and given x. Suppose =z ¢ X.
Then there exists a function B; from [ YX, Y ] into Y XY=} such that

(i)  Bj is bijective, and
(ii)  for every function f from X into Y and for every function F' from

X U{z} into Y such that F'[X = f holds Bi((f, F(z))) = F.

(58) Let X be a finite set, Y be a non empty finite set, and given x. Suppose
x ¢ X. Let F be a binary operation on D. Suppose F' is commutative and
associative and has a unity and an inverse operation. Let f be a function
from Y into D and g be a function from YXY{*} into D. Suppose that for
every function H from X into Y and for every element S; of Fin(Y XY{#})
such that S; = {h; h ranges over functions from XU{z} into Y: h|X = H}

holds F-} ¢ g = f(H). Then F—ZQfoZF—ZQf g.
Y Y

XU{z}
(59) Let A, B be matrices over D of dimension n X m and given i. Suppose
i <nand 0 < n. Let F' be a function from Segi into Segn. Then there
exists a matrix M over D of dimension n x m such that M = A+-(B -
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(idseq(n)+-F))| Segi and for every j holds if j € Segi, then M(j) =
B(F(j)) and if j ¢ Segi, then M (j) = A(j).

(60) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then there

Segn

exists a function P from (Segn) into the carrier of K such that

(i)  for every function F from Segn into Segn there exists a finite sequence
P, of elements of K such that len P, = n and for all natural numbers Fy, j
such that j € Segn and Fy = F(j) holds Py(j) = Aj r, and P(F) = ((the
multiplication of K') ® (Py)) - Det(B - F'), and

(ii) Det(A - B) = (the addition of K)- Zﬂfseg e P.

(61) Let A, B be matrices over K of dimension n. Suppose 0 < n. Then
there exists a function P from the permutations of n-element set into the
carrier of K such that

(i) Det(A- B) = (the addition of K)- P, and

the permutations of m-element set

(ii)  for every element p; of the permutations of n-element set holds P(p1) =
((the multiplication of K) ® (p1-Path A)) - (—1)*"®*) Det B.

(62) For all matrices A, B over K of dimension n such that 0 < n holds
Det(A - B) = Det A - Det B.
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