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Summary. In this article, we define the set H of quaternion numbers

as the set of all ordered sequences q = 〈x, y,w, z〉 where x,y,w and z are real

numbers. The addition, difference and multiplication of the quaternion numbers

are also defined. We define the real and imaginary parts of q and denote this by

x = ℜ(q), y = ℑ1(q), w = ℑ2(q), z = ℑ3(q). We define the addition, difference,

multiplication again and denote this operation by real and three imaginary parts.

We define the conjugate of q denoted by q∗′ and the absolute value of q denoted

by |q|. We also give some properties of quaternion numbers.

MML identifier: QUATERNI, version: 7.8.03 4.75.958

The articles [14], [16], [2], [1], [12], [17], [4], [5], [6], [13], [3], [11], [7], [8], [15],

[18], [9], and [10] provide the terminology and notation for this paper.

We use the following convention: a, b, c, d, x, y, w, z, x1, x2, x3, x4 denote

sets and A denotes a non empty set.

The functor H is defined by:

(Def. 1) H = (R4 \ {x;x ranges over elements of R4: x(2) = 0 ∧ x(3) = 0}) ∪C.

Let x be a number. We say that x is quaternion if and only if:

(Def. 2) x ∈ H .

Let us observe that H is non empty.

Let us consider x, y, w, z, a, b, c, d. The functor [x 7→ a, y 7→ b, w 7→ c, z 7→ d]

yields a set and is defined as follows:

(Def. 3) [x 7→ a, y 7→ b, w 7→ c, z 7→ d] = [x 7−→ a, y 7−→ b]+·[w 7−→ c, z 7−→ d].

Let us consider x, y, w, z, a, b, c, d. Note that [x 7→ a, y 7→ b, w 7→ c, z 7→ d]

is function-like and relation-like.

Next we state several propositions:
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162 xiquan liang and fuguo ge

(1) dom[x 7→ a, y 7→ b, w 7→ c, z 7→ d] = {x, y,w, z}.

(2) rng[x 7→ a, y 7→ b, w 7→ c, z 7→ d] ⊆ {a, b, c, d}.

(3) Suppose x, y, w, z are mutually different. Then [x 7→ a, y 7→ b, w 7→
c, z 7→ d](x) = a and [x 7→ a, y 7→ b, w 7→ c, z 7→ d](y) = b and [x 7→ a, y 7→
b, w 7→ c, z 7→ d](w) = c and [x 7→ a, y 7→ b, w 7→ c, z 7→ d](z) = d.

(4) If x, y, w, z are mutually different, then rng[x 7→ a, y 7→ b, w 7→ c, z 7→

d] = {a, b, c, d}.

(5) {x1, x2, x3, x4} ⊆ X iff x1 ∈ X and x2 ∈ X and x3 ∈ X and x4 ∈ X.

Let us consider A, x, y, w, z and let a, b, c, d be elements of A. Then

[x 7→ a, y 7→ b, w 7→ c, z 7→ d] is a function from {x, y,w, z} into A.

The functor j is defined by:

(Def. 4) j = [0 7→ 0, 1 7→ 0, 2 7→ 1, 3 7→ 0].

The functor k is defined by:

(Def. 5) k = [0 7→ 0, 1 7→ 0, 2 7→ 0, 3 7→ 1].

One can check the following observations:

∗ i is quaternion,

∗ j is quaternion, and

∗ k is quaternion.

Let us observe that there exists a number which is quaternion.

Let us mention that every element of H is quaternion.

Let x, y, w, z be elements of R. The functor 〈x, y,w, z〉H yields an element

of H and is defined as follows:

(Def. 6) 〈x, y,w, z〉H =

{

x + yi, if w = 0 and z = 0,

[0 7→ x, 1 7→ y, 2 7→ w, 3 7→ z], otherwise.

Next we state three propositions:

(6) Let a, b, c, d, e, i, j, k be sets and g be a function. Suppose a 6= b and

c 6= d and dom g = {a, b, c, d} and g(a) = e and g(b) = i and g(c) = j and

g(d) = k. Then g = [a 7→ e, b 7→ i, c 7→ j, d 7→ k].

(7) For every element g of H there exist elements r, s, t, u of R such that

g = 〈r, s, t, u〉H.

(8) If a, c, x, w are mutually different, then [a 7→ b, c 7→ d, x 7→ y,w 7→ z] =

{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈x, y〉〉, 〈〈w, z〉〉}.

We adopt the following convention: a, b, c, d are elements of R and r, s, t

are elements of Q+.

One can prove the following four propositions:

(9) Let A be a subset of Q+. Suppose there exists t such that t ∈ A and

t 6= ∅ and for all r, s such that r ∈ A and s ≤ r holds s ∈ A. Then there

exist elements r1, r2, r3, r4, r5 of Q+ such that
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r1 ∈ A and r2 ∈ A and r3 ∈ A and r4 ∈ A and r5 ∈ A and r1 6= r2 and

r1 6= r3 and r1 6= r4 and r1 6= r5 and r2 6= r3 and r2 6= r4 and r2 6= r5 and

r3 6= r4 and r3 6= r5 and r4 6= r5.

(10) [0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d] /∈ C.

(11) Let a, b, c, d, x, y, z, w, x′, y′, z′, w′ be sets. Suppose a, b, c, d are

mutually different and [a 7→ x, b 7→ y, c 7→ z, d 7→ w] = [a 7→ x′, b 7→
y′, c 7→ z′, d 7→ w′]. Then x = x′ and y = y′ and z = z′ and w = w′.

(12) For all elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that

〈x1, x2, x3, x4〉H = 〈y1, y2, y3, y4〉H holds x1 = y1 and x2 = y2 and x3 = y3

and x4 = y4.

Let x, y be quaternion numbers. The functor x + y is defined by:

(Def. 7) There exist elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that x =

〈x1, x2, x3, x4〉H and y = 〈y1, y2, y3, y4〉H and x+y = 〈x1 +y1, x2 +y2, x3 +

y3, x4 + y4〉H.

Let us observe that the functor x + y is commutative.

Let z be a quaternion number. The functor −z yields a quaternion number

and is defined by:

(Def. 8) z + −z = 0.

Let us observe that the functor −z is involutive.

Let x, y be quaternion numbers. The functor x − y is defined as follows:

(Def. 9) x − y = x + −y.

Let x, y be quaternion numbers. The functor x ·y is defined by the condition

(Def. 10).

(Def. 10) There exist elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that x =

〈x1, x2, x3, x4〉H and y = 〈y1, y2, y3, y4〉H and x · y = 〈x1 · y1 − x2 · y2 − x3 ·
y3 − x4 · y4, (x1 · y2 + x2 · y1 + x3 · y4)− x4 · y3, (x1 · y3 + y1 · x3 + y2 · x4)−

y4 · x2, (x1 · y4 + x4 · y1 + x2 · y3) − x3 · y2〉H.

Let z, z′ be quaternion numbers. One can verify the following observations:

∗ z + z′ is quaternion,

∗ z · z′ is quaternion, and

∗ z − z′ is quaternion.

j Is an element of H and it can be characterized by the condition:

(Def. 11) j = 〈0, 0, 1, 0〉H .

Then k is an element of H and it can be characterized by the condition:

(Def. 12) k = 〈0, 0, 0, 1〉H.

One can prove the following propositions:

(13) i · i = −1.

(14) j · j = −1.
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(15) k · k = −1.

(16) i · j = k.

(17) j · k = i.

(18) k · i = j.

(19) i · j = −j · i.

(20) j · k = −k · j.

(21) k · i = −i · k.

Let z be a quaternion number. The functor ℜ(z) is defined as follows:

(Def. 13)(i) There exists a complex number z ′ such that z = z′ and ℜ(z) = ℜ(z′)

if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and ℜ(z) = f(0),

otherwise.

The functor ℑ1(z) is defined by:

(Def. 14)(i) There exists a complex number z ′ such that z = z′ and ℑ1(z) = ℑ(z′)

if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and ℑ1(z) =

f(1), otherwise.

The functor ℑ2(z) is defined as follows:

(Def. 15)(i) ℑ2(z) = 0 if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and ℑ2(z) =

f(2), otherwise.

The functor ℑ3(z) is defined by:

(Def. 16)(i) ℑ3(z) = 0 if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and ℑ3(z) =

f(3), otherwise.

Let z be a quaternion number. One can check the following observations:

∗ ℜ(z) is real,

∗ ℑ1(z) is real,

∗ ℑ2(z) is real, and

∗ ℑ3(z) is real.

Let z be a quaternion number. Then ℜ(z) is a real number. Then ℑ1(z) is

a real number. Then ℑ2(z) is a real number. Then ℑ3(z) is a real number.

One can prove the following two propositions:

(22) For every function f from 4 into R there exist a, b, c, d such that

f = [0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d].

(23) ℜ(〈a, b, c, d〉H) = a and ℑ1(〈a, b, c, d〉H) = b and ℑ2(〈a, b, c, d〉H) = c and

ℑ3(〈a, b, c, d〉H) = d.

In the sequel z, z1, z2, z3, z4 denote quaternion numbers.
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Next we state two propositions:

(24) z = 〈ℜ(z),ℑ1(z),ℑ2(z),ℑ3(z)〉H.

(25) If ℜ(z1) = ℜ(z2) and ℑ1(z1) = ℑ1(z2) and ℑ2(z1) = ℑ2(z2) and ℑ3(z1) =

ℑ3(z2), then z1 = z2.

The quaternion number 0H is defined as follows:

(Def. 17) 0H = 0.

The quaternion number 1H is defined as follows:

(Def. 18) 1H = 1.

One can prove the following propositions:

(26) If ℜ(z) = 0 and ℑ1(z) = 0 and ℑ2(z) = 0 and ℑ3(z) = 0, then z = 0H.

(27) If z = 0, then (ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2 = 0.

(28) If (ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2 = 0, then z = 0H.

(29) ℜ(1H) = 1 and ℑ1(1H) = 0 and ℑ2(1H) = 0 and ℑ3(1H) = 0.

(30) ℜ(i) = 0 and ℑ1(i) = 1 and ℑ2(i) = 0 and ℑ3(i) = 0.

(31) ℜ(j) = 0 and ℑ1(j) = 0 and ℑ2(j) = 1 and ℑ3(j) = 0 and ℜ(k) = 0 and

ℑ1(k) = 0 and ℑ2(k) = 0 and ℑ3(k) = 1.

(32) ℜ(z1 + z2 + z3 + z4) = ℜ(z1) + ℜ(z2) + ℜ(z3) + ℜ(z4) and ℑ1(z1 + z2 +

z3 + z4) = ℑ1(z1) + ℑ1(z2) +ℑ1(z3) + ℑ1(z4) and ℑ2(z1 + z2 + z3 + z4) =

ℑ2(z1) + ℑ2(z2) + ℑ2(z3) + ℑ2(z4) and ℑ3(z1 + z2 + z3 + z4) = ℑ3(z1) +

ℑ3(z2) + ℑ3(z3) + ℑ3(z4).

In the sequel x denotes a real number.

We now state three propositions:

(33) If z1 = x, then ℜ(z1 · i) = 0 and ℑ1(z1 · i) = x and ℑ2(z1 · i) = 0 and

ℑ3(z1 · i) = 0.

(34) If z1 = x, then ℜ(z1 · j) = 0 and ℑ1(z1 · j) = 0 and ℑ2(z1 · j) = x and

ℑ3(z1 · j) = 0.

(35) If z1 = x, then ℜ(z1 · k) = 0 and ℑ1(z1 · k) = 0 and ℑ2(z1 · k) = 0 and

ℑ3(z1 · k) = x.

Let x be a real number and let y be a quaternion number. The functor x+y

is defined as follows:

(Def. 19) There exist elements y1, y2, y3, y4 of R such that y = 〈y1, y2, y3, y4〉H
and x + y = 〈x + y1, y2, y3, y4〉H.

Let x be a real number and let y be a quaternion number. The functor x−y

is defined by:

(Def. 20) x − y = x + −y.

Let x be a real number and let y be a quaternion number. The functor x · y

is defined as follows:
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(Def. 21) There exist elements y1, y2, y3, y4 of R such that y = 〈y1, y2, y3, y4〉H
and x · y = 〈x · y1, x · y2, x · y3, x · y4〉H.

Let x be a real number and let z ′ be a quaternion number. One can verify

the following observations:

∗ x + z′ is quaternion,

∗ x · z′ is quaternion, and

∗ x − z′ is quaternion.

Let z1, z2 be quaternion numbers. Then z1 + z2 is an element of H and it

can be characterized by the condition:

(Def. 22) z1 + z2 = ℜ(z1) + ℜ(z2) + (ℑ1(z1) + ℑ1(z2)) · i + (ℑ2(z1) + ℑ2(z2)) · j +

(ℑ3(z1) + ℑ3(z2)) · k.

The following proposition is true

(36) ℜ(z1 + z2) = ℜ(z1) + ℜ(z2) and ℑ1(z1 + z2) = ℑ1(z1) + ℑ1(z2) and

ℑ2(z1 + z2) = ℑ2(z1) + ℑ2(z2) and ℑ3(z1 + z2) = ℑ3(z1) + ℑ3(z2).

Let z1, z2 be elements of H. Then z1 · z2 is an element of H and it can be

characterized by the condition:

(Def. 23) z1 ·z2 = (ℜ(z1)·ℜ(z2)−ℑ1(z1)·ℑ1(z2)−ℑ2(z1)·ℑ2(z2)−ℑ3(z1)·ℑ3(z2))+

((ℜ(z1) · ℑ1(z2) + ℑ1(z1) · ℜ(z2) + ℑ2(z1) · ℑ3(z2)) −ℑ3(z1) · ℑ2(z2)) · i +

((ℜ(z1) · ℑ2(z2) + ℑ2(z1) · ℜ(z2) + ℑ3(z1) · ℑ1(z2)) −ℑ1(z1) · ℑ3(z2)) · j +

((ℜ(z1) · ℑ3(z2) + ℑ3(z1) · ℜ(z2) + ℑ1(z1) · ℑ2(z2)) −ℑ2(z1) · ℑ1(z2)) · k.

We now state four propositions:

(37) z = ℜ(z) + ℑ1(z) · i + ℑ2(z) · j + ℑ3(z) · k.

(38) Suppose ℑ1(z1) = 0 and ℑ1(z2) = 0 and ℑ2(z1) = 0 and ℑ2(z2) = 0

and ℑ3(z1) = 0 and ℑ3(z2) = 0. Then ℜ(z1 · z2) = ℜ(z1) · ℜ(z2) and

ℑ1(z1 · z2) = ℑ2(z1) · ℑ3(z2) − ℑ3(z1) · ℑ2(z2) and ℑ2(z1 · z2) = ℑ3(z1) ·
ℑ1(z2)−ℑ1(z1) · ℑ3(z2) and ℑ3(z1 · z2) = ℑ1(z1) · ℑ2(z2)−ℑ2(z1) · ℑ1(z2).

(39) Suppose ℜ(z1) = 0 and ℜ(z2) = 0. Then ℜ(z1 · z2) = −ℑ1(z1) · ℑ1(z2)−
ℑ2(z1) · ℑ2(z2)−ℑ3(z1) · ℑ3(z2) and ℑ1(z1 · z2) = ℑ2(z1) · ℑ3(z2)−ℑ3(z1) ·
ℑ2(z2) and ℑ2(z1 · z2) = ℑ3(z1) · ℑ1(z2)−ℑ1(z1) · ℑ3(z2) and ℑ3(z1 · z2) =

ℑ1(z1) · ℑ2(z2) −ℑ2(z1) · ℑ1(z2).

(40) ℜ(z · z) = (ℜ(z))2 − (ℑ1(z))2 − (ℑ2(z))2 − (ℑ3(z))2 and ℑ1(z · z) = 2 ·

(ℜ(z)·ℑ1(z)) and ℑ2(z·z) = 2·(ℜ(z)·ℑ2(z)) and ℑ3(z·z) = 2·(ℜ(z)·ℑ3(z)).

Let z be a quaternion number. Then −z is an element of H and it can be

characterized by the condition:

(Def. 24) −z = −ℜ(z) + (−ℑ1(z)) · i + (−ℑ2(z)) · j + (−ℑ3(z)) · k.

The following proposition is true

(41) ℜ(−z) = −ℜ(z) and ℑ1(−z) = −ℑ1(z) and ℑ2(−z) = −ℑ2(z) and

ℑ3(−z) = −ℑ3(z).
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Let z1, z2 be quaternion numbers. Then z1 − z2 is an element of H and it

can be characterized by the condition:

(Def. 25) z1 − z2 = (ℜ(z1)−ℜ(z2)) + (ℑ1(z1)−ℑ1(z2)) · i + (ℑ2(z1)−ℑ2(z2)) · j +

(ℑ3(z1) −ℑ3(z2)) · k.

One can prove the following proposition

(42) ℜ(z1 − z2) = ℜ(z1) − ℜ(z2) and ℑ1(z1 − z2) = ℑ1(z1) − ℑ1(z2) and

ℑ2(z1 − z2) = ℑ2(z1) −ℑ2(z2) and ℑ3(z1 − z2) = ℑ3(z1) −ℑ3(z2).

Let z be a quaternion number. The functor z yielding a quaternion number

is defined by:

(Def. 26) z = ℜ(z) + (−ℑ1(z)) · i + (−ℑ2(z)) · j + (−ℑ3(z)) · k.

Let z be a quaternion number. Then z is an element of H.

We now state a number of propositions:

(43) z = 〈ℜ(z),−ℑ1(z),−ℑ2(z),−ℑ3(z)〉H.

(44) ℜ(z ) = ℜ(z) and ℑ1(z ) = −ℑ1(z) and ℑ2(z ) = −ℑ2(z) and ℑ3(z ) =

−ℑ3(z).

(45) If z = 0, then z = 0.

(46) If z = 0, then z = 0.

(47) 1H = 1H.

(48) ℜ(i) = 0 and ℑ1(i) = −1 and ℑ2(i) = 0 and ℑ3(i) = 0.

(49) ℜ(j ) = 0 and ℑ1(j ) = 0 and ℑ2(j ) = −1 and ℑ3(j ) = 0.

(50) ℜ(k ) = 0 and ℑ1(k ) = 0 and ℑ2(k ) = 0 and ℑ3(k ) = −1.

(51) i = −i.

(52) j = −j.

(53) k = −k.

(54) z1 + z2 = z1 + z2 .

(55) −z = −z .

(56) z1 − z2 = z1 − z2 .

(57) If ℑ2(z1) · ℑ3(z2) 6= ℑ3(z1) · ℑ2(z2), then z1 · z2 6= z1 · z2 .

(58) If ℑ1(z) = 0 and ℑ2(z) = 0 and ℑ3(z) = 0, then z = z.

(59) If ℜ(z) = 0, then z = −z.

(60) ℜ(z · z ) = (ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2 and ℑ1(z · z ) = 0

and ℑ2(z · z ) = 0 and ℑ3(z · z ) = 0.

(61) ℜ(z+z ) = 2·ℜ(z) and ℑ1(z+z ) = 0 and ℑ2(z+z ) = 0 and ℑ3(z+z ) = 0.

(62) −z = 〈−ℜ(z),−ℑ1(z),−ℑ2(z),−ℑ3(z)〉H.

(63) z1 − z2 = 〈ℜ(z1) − ℜ(z2),ℑ1(z1) − ℑ1(z2),ℑ2(z1) − ℑ2(z2),ℑ3(z1) −

ℑ3(z2)〉H.

(64) ℜ(z − z ) = 0 and ℑ1(z − z ) = 2 · ℑ1(z) and ℑ2(z − z ) = 2 · ℑ2(z) and

ℑ3(z − z ) = 2 · ℑ3(z).
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Let us consider z. The functor |z| yielding a real number is defined by:

(Def. 27) |z| =
√

(ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2.

We now state a number of propositions:

(65) |0H| = 0.

(66) If |z| = 0, then z = 0.

(67) 0 ≤ |z|.

(68) |1H| = 1.

(69) |i| = 1.

(70) |j| = 1.

(71) |k| = 1.

(72) |−z| = |z|.

(73) |z | = |z|.

(74) 0 ≤ (ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2.

(75) ℜ(z) ≤ |z|.

(76) ℑ1(z) ≤ |z|.

(77) ℑ2(z) ≤ |z|.

(78) ℑ3(z) ≤ |z|.

(79) |z1 + z2| ≤ |z1| + |z2|.

(80) |z1 − z2| ≤ |z1| + |z2|.

(81) |z1| − |z2| ≤ |z1 + z2|.

(82) |z1| − |z2| ≤ |z1 − z2|.

(83) |z1 − z2| = |z2 − z1|.

(84) |z1 − z2| = 0 iff z1 = z2.

(85) |z1 − z2| ≤ |z1 − z| + |z − z2|.

(86) ||z1| − |z2|| ≤ |z1 − z2|.

(87) |z1 · z2| = |z1| · |z2|.

(88) |z · z| = (ℜ(z))2 + (ℑ1(z))2 + (ℑ2(z))2 + (ℑ3(z))2.

(89) |z · z| = |z · z |.
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