The Quaternion Numbers

Xiquan Liang
Qingdao University of Science
and Technology
China

Fuguo Ge
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we define the set \mathbb{H} of quaternion numbers as the set of all ordered sequences $q=\langle x, y, w, z\rangle$ where x, y, w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by $x=\Re(q), y=\Im_{1}(q), w=\Im_{2}(q), z=\Im_{3}(q)$. We define the addition, difference, multiplication again and denote this operation by real and three imaginary parts. We define the conjugate of q denoted by $q *^{\prime}$ and the absolute value of q denoted by $|q|$. We also give some properties of quaternion numbers.

MML identifier: QUATERNI, version: 7.8.03 4.75.958

The articles [14], [16], [2], [1], [12], [17], [4], [5], [6], [13], [3], [11], [7], [8], [15], [18], [9], and [10] provide the terminology and notation for this paper.

We use the following convention: $a, b, c, d, x, y, w, z, x_{1}, x_{2}, x_{3}, x_{4}$ denote sets and A denotes a non empty set.

The functor \mathbb{H} is defined by:
(Def. 1) $\mathbb{H}=\left(\mathbb{R}^{4} \backslash\left\{x ; x\right.\right.$ ranges over elements of $\left.\left.\mathbb{R}^{4}: x(2)=0 \wedge x(3)=0\right\}\right) \cup \mathbb{C}$.
Let x be a number. We say that x is quaternion if and only if:
(Def. 2) $\quad x \in \mathbb{H}$.
Let us observe that \mathbb{H} is non empty.
Let us consider x, y, w, z, a, b, c, d. The functor $[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d]$ yields a set and is defined as follows:
(Def. 3) $\quad[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d]=[x \longmapsto a, y \longmapsto b]+\cdot[w \longmapsto c, z \longmapsto d]$.
Let us consider x, y, w, z, a, b, c, d. Note that $[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d]$ is function-like and relation-like.

Next we state several propositions:
(1) $\operatorname{dom}[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d]=\{x, y, w, z\}$.
(2) $\quad \operatorname{rng}[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d] \subseteq\{a, b, c, d\}$.
(3) Suppose x, y, w, z are mutually different. Then $[x \mapsto a, y \mapsto b, w \mapsto$ $c, z \mapsto d](x)=a$ and $[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d](y)=b$ and $[x \mapsto a, y \mapsto$ $b, w \mapsto c, z \mapsto d](w)=c$ and $[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d](z)=d$.
(4) If x, y, w, z are mutually different, then $\operatorname{rng}[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto$ $d]=\{a, b, c, d\}$.
(5) $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq X$ iff $x_{1} \in X$ and $x_{2} \in X$ and $x_{3} \in X$ and $x_{4} \in X$.

Let us consider A, x, y, w, z and let a, b, c, d be elements of A. Then $[x \mapsto a, y \mapsto b, w \mapsto c, z \mapsto d]$ is a function from $\{x, y, w, z\}$ into A.

The functor j is defined by:
(Def. 4) $j=[0 \mapsto 0,1 \mapsto 0,2 \mapsto 1,3 \mapsto 0]$.
The functor k is defined by:
(Def. 5) $\quad k=[0 \mapsto 0,1 \mapsto 0,2 \mapsto 0,3 \mapsto 1]$.
One can check the following observations:

* i is quaternion,
* j is quaternion, and
* k is quaternion.

Let us observe that there exists a number which is quaternion.
Let us mention that every element of \mathbb{H} is quaternion.
Let x, y, w, z be elements of \mathbb{R}. The functor $\langle x, y, w, z\rangle_{\mathbb{H}}$ yields an element of \mathbb{H} and is defined as follows:
(Def. 6) $\langle x, y, w, z\rangle_{\mathbb{H}}=\left\{\begin{array}{l}x+y i, \text { if } w=0 \text { and } z=0, \\ {[0 \mapsto x, 1 \mapsto y, 2 \mapsto w, 3 \mapsto z], \text { otherwise. }}\end{array}\right.$
Next we state three propositions:
(6) Let a, b, c, d, e, i, j, k be sets and g be a function. Suppose $a \neq b$ and $c \neq d$ and $\operatorname{dom} g=\{a, b, c, d\}$ and $g(a)=e$ and $g(b)=i$ and $g(c)=j$ and $g(d)=k$. Then $g=[a \mapsto e, b \mapsto i, c \mapsto j, d \mapsto k]$.
(7) For every element g of \mathbb{H} there exist elements r, s, t, u of \mathbb{R} such that $g=\langle r, s, t, u\rangle_{\mathbb{H}}$.
(8) If a, c, x, w are mutually different, then $[a \mapsto b, c \mapsto d, x \mapsto y, w \mapsto z]=$ $\{\langle a, b\rangle,\langle c, d\rangle,\langle x, y\rangle,\langle w, z\rangle\}$.
We adopt the following convention: a, b, c, d are elements of \mathbb{R} and r, s, t are elements of \mathbb{Q}_{+}.

One can prove the following four propositions:
(9) Let A be a subset of \mathbb{Q}_{+}. Suppose there exists t such that $t \in A$ and $t \neq \emptyset$ and for all r, s such that $r \in A$ and $s \leq r$ holds $s \in A$. Then there exist elements $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ of \mathbb{Q}_{+}such that
$r_{1} \in A$ and $r_{2} \in A$ and $r_{3} \in A$ and $r_{4} \in A$ and $r_{5} \in A$ and $r_{1} \neq r_{2}$ and $r_{1} \neq r_{3}$ and $r_{1} \neq r_{4}$ and $r_{1} \neq r_{5}$ and $r_{2} \neq r_{3}$ and $r_{2} \neq r_{4}$ and $r_{2} \neq r_{5}$ and $r_{3} \neq r_{4}$ and $r_{3} \neq r_{5}$ and $r_{4} \neq r_{5}$.
(10) $\quad[0 \mapsto a, 1 \mapsto b, 2 \mapsto c, 3 \mapsto d] \notin \mathbb{C}$.
(11) Let $a, b, c, d, x, y, z, w, x^{\prime}, y^{\prime}, z^{\prime}, w^{\prime}$ be sets. Suppose a, b, c, d are mutually different and $[a \mapsto x, b \mapsto y, c \mapsto z, d \mapsto w]=\left[a \mapsto x^{\prime}, b \mapsto\right.$ $\left.y^{\prime}, c \mapsto z^{\prime}, d \mapsto w^{\prime}\right]$. Then $x=x^{\prime}$ and $y=y^{\prime}$ and $z=z^{\prime}$ and $w=w^{\prime}$.
(12) For all elements $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}$ of \mathbb{R} such that $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle_{\mathbb{H}}=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{\mathbb{H}}$ holds $x_{1}=y_{1}$ and $x_{2}=y_{2}$ and $x_{3}=y_{3}$ and $x_{4}=y_{4}$.
Let x, y be quaternion numbers. The functor $x+y$ is defined by:
(Def. 7) There exist elements $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}$ of \mathbb{R} such that $x=$ $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle_{\mathbb{H}}$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{\mathbb{H}}$ and $x+y=\left\langle x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+\right.$ $\left.y_{3}, x_{4}+y_{4}\right)_{\text {H. }}$.
Let us observe that the functor $x+y$ is commutative.
Let z be a quaternion number. The functor $-z$ yields a quaternion number and is defined by:
(Def. 8) $z+-z=0$.
Let us observe that the functor $-z$ is involutive.
Let x, y be quaternion numbers. The functor $x-y$ is defined as follows:
(Def. 9) $x-y=x+-y$.
Let x, y be quaternion numbers. The functor $x \cdot y$ is defined by the condition (Def. 10).
(Def. 10) There exist elements $x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}$ of \mathbb{R} such that $x=$ $\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle_{\mathbb{H}}$ and $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{\mathbb{H}}$ and $x \cdot y=\left\langle x_{1} \cdot y_{1}-x_{2} \cdot y_{2}-x_{3}\right.$. $y_{3}-x_{4} \cdot y_{4},\left(x_{1} \cdot y_{2}+x_{2} \cdot y_{1}+x_{3} \cdot y_{4}\right)-x_{4} \cdot y_{3},\left(x_{1} \cdot y_{3}+y_{1} \cdot x_{3}+y_{2} \cdot x_{4}\right)-$ $\left.y_{4} \cdot x_{2},\left(x_{1} \cdot y_{4}+x_{4} \cdot y_{1}+x_{2} \cdot y_{3}\right)-x_{3} \cdot y_{2}\right\rangle_{\mathbb{H} \cdot}$.
Let z, z^{\prime} be quaternion numbers. One can verify the following observations:

* $z+z^{\prime}$ is quaternion,
* $z \cdot z^{\prime}$ is quaternion, and
* $z-z^{\prime}$ is quaternion.
j Is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 11) $\quad j=\langle 0,0,1,0\rangle_{\text {HI }}$.
Then k is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 12) $k=\langle 0,0,0,1\rangle_{\boldsymbol{H}}$.
One can prove the following propositions:
(13) $i \cdot i=-1$.
(14) $j \cdot j=-1$.
(15) $k \cdot k=-1$.
(16) $i \cdot j=k$.
(17) $j \cdot k=i$.
(18) $k \cdot i=j$.
(19) $i \cdot j=-j \cdot i$.
(20) $j \cdot k=-k \cdot j$.
(21) $k \cdot i=-i \cdot k$.

Let z be a quaternion number. The functor $\Re(z)$ is defined as follows:
(Def. 13)(i) There exists a complex number z^{\prime} such that $z=z^{\prime}$ and $\Re(z)=\Re\left(z^{\prime}\right)$ if $z \in \mathbb{C}$,
(ii) there exists a function f from 4 into \mathbb{R} such that $z=f$ and $\Re(z)=f(0)$, otherwise.
The functor $\Im_{1}(z)$ is defined by:
(Def. 14)(i) There exists a complex number z^{\prime} such that $z=z^{\prime}$ and $\Im_{1}(z)=\Im\left(z^{\prime}\right)$ if $z \in \mathbb{C}$,
(ii) there exists a function f from 4 into \mathbb{R} such that $z=f$ and $\Im_{1}(z)=$ $f(1)$, otherwise.
The functor $\Im_{2}(z)$ is defined as follows:
(Def. 15)(i) $\quad \Im_{2}(z)=0$ if $z \in \mathbb{C}$,
(ii) there exists a function f from 4 into \mathbb{R} such that $z=f$ and $\Im_{2}(z)=$ $f(2)$, otherwise.
The functor $\Im_{3}(z)$ is defined by:
(Def. 16)(i) $\quad \Im_{3}(z)=0$ if $z \in \mathbb{C}$,
(ii) there exists a function f from 4 into \mathbb{R} such that $z=f$ and $\Im_{3}(z)=$ $f(3)$, otherwise.
Let z be a quaternion number. One can check the following observations:

* $\Re(z)$ is real,
* $\Im_{1}(z)$ is real,
* $\Im_{2}(z)$ is real, and
* $\Im_{3}(z)$ is real.

Let z be a quaternion number. Then $\Re(z)$ is a real number. Then $\Im_{1}(z)$ is a real number. Then $\Im_{2}(z)$ is a real number. Then $\Im_{3}(z)$ is a real number.

One can prove the following two propositions:
(22) For every function f from 4 into \mathbb{R} there exist a, b, c, d such that $f=[0 \mapsto a, 1 \mapsto b, 2 \mapsto c, 3 \mapsto d]$.
(23) $\Re\left(\langle a, b, c, d\rangle_{\mathbb{H}}\right)=a$ and $\Im_{1}\left(\langle a, b, c, d\rangle_{\mathbb{H}}\right)=b$ and $\Im_{2}\left(\langle a, b, c, d\rangle_{\mathbb{H}}\right)=c$ and $\Im_{3}\left(\langle a, b, c, d\rangle_{\mathbb{H}}\right)=d$.
In the sequel $z, z_{1}, z_{2}, z_{3}, z_{4}$ denote quaternion numbers.

Next we state two propositions:
(24) $z=\left\langle\Re(z), \Im_{1}(z), \Im_{2}(z), \Im_{3}(z)\right\rangle_{\mathbb{H}}$.
(25) If $\Re\left(z_{1}\right)=\Re\left(z_{2}\right)$ and $\Im_{1}\left(z_{1}\right)=\Im_{1}\left(z_{2}\right)$ and $\Im_{2}\left(z_{1}\right)=\Im_{2}\left(z_{2}\right)$ and $\Im_{3}\left(z_{1}\right)=$ $\Im_{3}\left(z_{2}\right)$, then $z_{1}=z_{2}$.
The quaternion number 0_{H} is defined as follows:
(Def. 17) $0_{H}=0$.
The quaternion number $1_{\mathbb{H}}$ is defined as follows:
(Def. 18) $1_{\mathbb{H}}=1$.
One can prove the following propositions:
(26) If $\Re(z)=0$ and $\Im_{1}(z)=0$ and $\Im_{2}(z)=0$ and $\Im_{3}(z)=0$, then $z=0_{\mathbb{H}}$.
(27) If $z=0$, then $(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}=0$.
(28) If $(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}=0$, then $z=0_{\mathbb{H}}$.
(29) $\Re\left(1_{\mathbb{H}}\right)=1$ and $\Im_{1}\left(1_{\mathbb{H}}\right)=0$ and $\Im_{2}\left(1_{\mathbb{H}}\right)=0$ and $\Im_{3}\left(1_{\mathbb{H}}\right)=0$.
(30) $\Re(i)=0$ and $\Im_{1}(i)=1$ and $\Im_{2}(i)=0$ and $\Im_{3}(i)=0$.
(31) $\Re(j)=0$ and $\Im_{1}(j)=0$ and $\Im_{2}(j)=1$ and $\Im_{3}(j)=0$ and $\Re(k)=0$ and $\Im_{1}(k)=0$ and $\Im_{2}(k)=0$ and $\Im_{3}(k)=1$.
(32) $\Re\left(z_{1}+z_{2}+z_{3}+z_{4}\right)=\Re\left(z_{1}\right)+\Re\left(z_{2}\right)+\Re\left(z_{3}\right)+\Re\left(z_{4}\right)$ and $\Im_{1}\left(z_{1}+z_{2}+\right.$ $\left.z_{3}+z_{4}\right)=\Im_{1}\left(z_{1}\right)+\Im_{1}\left(z_{2}\right)+\Im_{1}\left(z_{3}\right)+\Im_{1}\left(z_{4}\right)$ and $\Im_{2}\left(z_{1}+z_{2}+z_{3}+z_{4}\right)=$ $\Im_{2}\left(z_{1}\right)+\Im_{2}\left(z_{2}\right)+\Im_{2}\left(z_{3}\right)+\Im_{2}\left(z_{4}\right)$ and $\Im_{3}\left(z_{1}+z_{2}+z_{3}+z_{4}\right)=\Im_{3}\left(z_{1}\right)+$ $\Im_{3}\left(z_{2}\right)+\Im_{3}\left(z_{3}\right)+\Im_{3}\left(z_{4}\right)$.
In the sequel x denotes a real number.
We now state three propositions:
(33) If $z_{1}=x$, then $\Re\left(z_{1} \cdot i\right)=0$ and $\Im_{1}\left(z_{1} \cdot i\right)=x$ and $\Im_{2}\left(z_{1} \cdot i\right)=0$ and $\Im_{3}\left(z_{1} \cdot i\right)=0$.
(34) If $z_{1}=x$, then $\Re\left(z_{1} \cdot j\right)=0$ and $\Im_{1}\left(z_{1} \cdot j\right)=0$ and $\Im_{2}\left(z_{1} \cdot j\right)=x$ and $\Im_{3}\left(z_{1} \cdot j\right)=0$.
(35) If $z_{1}=x$, then $\Re\left(z_{1} \cdot k\right)=0$ and $\Im_{1}\left(z_{1} \cdot k\right)=0$ and $\Im_{2}\left(z_{1} \cdot k\right)=0$ and $\Im_{3}\left(z_{1} \cdot k\right)=x$.
Let x be a real number and let y be a quaternion number. The functor $x+y$ is defined as follows:
(Def. 19) There exist elements $y_{1}, y_{2}, y_{3}, y_{4}$ of \mathbb{R} such that $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{\mathbb{H}}$ and $x+y=\left\langle x+y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{H \mathbb{H}}$.
Let x be a real number and let y be a quaternion number. The functor $x-y$ is defined by:
(Def. 20) $\quad x-y=x+-y$.
Let x be a real number and let y be a quaternion number. The functor $x \cdot y$ is defined as follows:
(Def. 21) There exist elements $y_{1}, y_{2}, y_{3}, y_{4}$ of \mathbb{R} such that $y=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle_{\mathbb{H}}$ and $x \cdot y=\left\langle x \cdot y_{1}, x \cdot y_{2}, x \cdot y_{3}, x \cdot y_{4}\right\rangle_{\mathbb{H}}$.
Let x be a real number and let z^{\prime} be a quaternion number. One can verify the following observations:

* $x+z^{\prime}$ is quaternion,
* $x \cdot z^{\prime}$ is quaternion, and
* $x-z^{\prime}$ is quaternion.

Let z_{1}, z_{2} be quaternion numbers. Then $z_{1}+z_{2}$ is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 22) $\quad z_{1}+z_{2}=\Re\left(z_{1}\right)+\Re\left(z_{2}\right)+\left(\Im_{1}\left(z_{1}\right)+\Im_{1}\left(z_{2}\right)\right) \cdot i+\left(\Im_{2}\left(z_{1}\right)+\Im_{2}\left(z_{2}\right)\right) \cdot j+$ $\left(\Im_{3}\left(z_{1}\right)+\Im_{3}\left(z_{2}\right)\right) \cdot k$.
The following proposition is true
(36) $\Re\left(z_{1}+z_{2}\right)=\Re\left(z_{1}\right)+\Re\left(z_{2}\right)$ and $\Im_{1}\left(z_{1}+z_{2}\right)=\Im_{1}\left(z_{1}\right)+\Im_{1}\left(z_{2}\right)$ and $\Im_{2}\left(z_{1}+z_{2}\right)=\Im_{2}\left(z_{1}\right)+\Im_{2}\left(z_{2}\right)$ and $\Im_{3}\left(z_{1}+z_{2}\right)=\Im_{3}\left(z_{1}\right)+\Im_{3}\left(z_{2}\right)$.
Let z_{1}, z_{2} be elements of \mathbb{H}. Then $z_{1} \cdot z_{2}$ is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 23) $\quad z_{1} \cdot z_{2}=\left(\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)-\Im_{1}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)-\Im_{2}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)-\Im_{3}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)\right)+$ $\left(\left(\Re\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)+\Im_{1}\left(z_{1}\right) \cdot \Re\left(z_{2}\right)+\Im_{2}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)\right)-\Im_{3}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)\right) \cdot i+$ $\left(\left(\Re\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)+\Im_{2}\left(z_{1}\right) \cdot \Re\left(z_{2}\right)+\Im_{3}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)\right)-\Im_{1}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)\right) \cdot j+$ $\left(\left(\Re\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)+\Im_{3}\left(z_{1}\right) \cdot \Re\left(z_{2}\right)+\Im_{1}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)\right)-\Im_{2}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)\right) \cdot k$.
We now state four propositions:
(37) $z=\Re(z)+\Im_{1}(z) \cdot i+\Im_{2}(z) \cdot j+\Im_{3}(z) \cdot k$.
(38) Suppose $\Im_{1}\left(z_{1}\right)=0$ and $\Im_{1}\left(z_{2}\right)=0$ and $\Im_{2}\left(z_{1}\right)=0$ and $\Im_{2}\left(z_{2}\right)=0$ and $\Im_{3}\left(z_{1}\right)=0$ and $\Im_{3}\left(z_{2}\right)=0$. Then $\Re\left(z_{1} \cdot z_{2}\right)=\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)$ and $\Im_{1}\left(z_{1} \cdot z_{2}\right)=\Im_{2}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)-\Im_{3}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)$ and $\Im_{2}\left(z_{1} \cdot z_{2}\right)=\Im_{3}\left(z_{1}\right)$. $\Im_{1}\left(z_{2}\right)-\Im_{1}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)$ and $\Im_{3}\left(z_{1} \cdot z_{2}\right)=\Im_{1}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)-\Im_{2}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)$.
(39) Suppose $\Re\left(z_{1}\right)=0$ and $\Re\left(z_{2}\right)=0$. Then $\Re\left(z_{1} \cdot z_{2}\right)=-\Im_{1}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)-$ $\Im_{2}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)-\Im_{3}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)$ and $\Im_{1}\left(z_{1} \cdot z_{2}\right)=\Im_{2}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)-\Im_{3}\left(z_{1}\right)$. $\Im_{2}\left(z_{2}\right)$ and $\Im_{2}\left(z_{1} \cdot z_{2}\right)=\Im_{3}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)-\Im_{1}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right)$ and $\Im_{3}\left(z_{1} \cdot z_{2}\right)=$ $\Im_{1}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)-\Im_{2}\left(z_{1}\right) \cdot \Im_{1}\left(z_{2}\right)$.
(40) $\Re(z \cdot z)=(\Re(z))^{2}-\left(\Im_{1}(z)\right)^{2}-\left(\Im_{2}(z)\right)^{2}-\left(\Im_{3}(z)\right)^{2}$ and $\Im_{1}(z \cdot z)=2$. $\left(\Re(z) \cdot \Im_{1}(z)\right)$ and $\Im_{2}(z \cdot z)=2 \cdot\left(\Re(z) \cdot \Im_{2}(z)\right)$ and $\Im_{3}(z \cdot z)=2 \cdot\left(\Re(z) \cdot \Im_{3}(z)\right)$.
Let z be a quaternion number. Then $-z$ is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 24) $-z=-\Re(z)+\left(-\Im_{1}(z)\right) \cdot i+\left(-\Im_{2}(z)\right) \cdot j+\left(-\Im_{3}(z)\right) \cdot k$.
The following proposition is true
(41) $\Re(-z)=-\Re(z)$ and $\Im_{1}(-z)=-\Im_{1}(z)$ and $\Im_{2}(-z)=-\Im_{2}(z)$ and $\Im_{3}(-z)=-\Im_{3}(z)$.

Let z_{1}, z_{2} be quaternion numbers. Then $z_{1}-z_{2}$ is an element of \mathbb{H} and it can be characterized by the condition:
(Def. 25) $\quad z_{1}-z_{2}=\left(\Re\left(z_{1}\right)-\Re\left(z_{2}\right)\right)+\left(\Im_{1}\left(z_{1}\right)-\Im_{1}\left(z_{2}\right)\right) \cdot i+\left(\Im_{2}\left(z_{1}\right)-\Im_{2}\left(z_{2}\right)\right) \cdot j+$ $\left(\Im_{3}\left(z_{1}\right)-\Im_{3}\left(z_{2}\right)\right) \cdot k$.
One can prove the following proposition
(42) $\Re\left(z_{1}-z_{2}\right)=\Re\left(z_{1}\right)-\Re\left(z_{2}\right)$ and $\Im_{1}\left(z_{1}-z_{2}\right)=\Im_{1}\left(z_{1}\right)-\Im_{1}\left(z_{2}\right)$ and $\Im_{2}\left(z_{1}-z_{2}\right)=\Im_{2}\left(z_{1}\right)-\Im_{2}\left(z_{2}\right)$ and $\Im_{3}\left(z_{1}-z_{2}\right)=\Im_{3}\left(z_{1}\right)-\Im_{3}\left(z_{2}\right)$.
Let z be a quaternion number. The functor \bar{z} yielding a quaternion number is defined by:
(Def. 26) $\quad \bar{z}=\Re(z)+\left(-\Im_{1}(z)\right) \cdot i+\left(-\Im_{2}(z)\right) \cdot j+\left(-\Im_{3}(z)\right) \cdot k$.
Let z be a quaternion number. Then \bar{z} is an element of \mathbb{H}.
We now state a number of propositions:
(43) $\bar{z}=\left\langle\Re(z),-\Im_{1}(z),-\Im_{2}(z),-\Im_{3}(z)\right\rangle_{\mathbb{H}}$.
(44) $\Re(\bar{z})=\Re(z)$ and $\Im_{1}(\bar{z})=-\Im_{1}(z)$ and $\Im_{2}(\bar{z})=-\Im_{2}(z)$ and $\Im_{3}(\bar{z})=$ $-\Im_{3}(z)$.
(45) If $z=0$, then $\bar{z}=0$.
(46) If $\bar{z}=0$, then $z=0$.
(47) $\quad \overline{1_{\mathbb{H}}}=1_{\mathbb{H}}$.
(48) $\Re(\bar{i})=0$ and $\Im_{1}(\bar{i})=-1$ and $\Im_{2}(\bar{i})=0$ and $\Im_{3}(\bar{i})=0$.
(49) $\Re(\bar{j})=0$ and $\Im_{1}(\bar{j})=0$ and $\Im_{2}(\bar{j})=-1$ and $\Im_{3}(\bar{j})=0$.
(50) $\Re(\bar{k})=0$ and $\Im_{1}(\bar{k})=0$ and $\Im_{2}(\bar{k})=0$ and $\Im_{3}(\bar{k})=-1$.
(51) $\bar{i}=-i$.
(52) $\bar{j}=-j$.
(53) $\bar{k}=-k$.
(54) $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.
(55) $\overline{-z}=-\bar{z}$.
(56) $\overline{z_{1}-z_{2}}=\overline{z_{1}}-\overline{z_{2}}$.
(57) If $\Im_{2}\left(z_{1}\right) \cdot \Im_{3}\left(z_{2}\right) \neq \Im_{3}\left(z_{1}\right) \cdot \Im_{2}\left(z_{2}\right)$, then $\overline{z_{1} \cdot z_{2}} \neq \overline{z_{1}} \cdot \overline{z_{2}}$.
(58) If $\Im_{1}(z)=0$ and $\Im_{2}(z)=0$ and $\Im_{3}(z)=0$, then $\bar{z}=z$.
(59) If $\Re(z)=0$, then $\bar{z}=-z$.
(60) $\Re(z \cdot \bar{z})=(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}$ and $\Im_{1}(z \cdot \bar{z})=0$ and $\Im_{2}(z \cdot \bar{z})=0$ and $\Im_{3}(z \cdot \bar{z})=0$.
(61) $\Re(z+\bar{z})=2 \cdot \Re(z)$ and $\Im_{1}(z+\bar{z})=0$ and $\Im_{2}(z+\bar{z})=0$ and $\Im_{3}(z+\bar{z})=0$.
(62) $-z=\left\langle-\Re(z),-\Im_{1}(z),-\Im_{2}(z),-\Im_{3}(z)\right\rangle_{\mathbb{H}}$.
(63) $z_{1}-z_{2}=\left\langle\Re\left(z_{1}\right)-\Re\left(z_{2}\right), \Im_{1}\left(z_{1}\right)-\Im_{1}\left(z_{2}\right), \Im_{2}\left(z_{1}\right)-\Im_{2}\left(z_{2}\right), \Im_{3}\left(z_{1}\right)-\right.$ $\left.\Im_{3}\left(z_{2}\right)\right\rangle_{\mathbb{H}}$.
(64) $\Re(z-\bar{z})=0$ and $\Im_{1}(z-\bar{z})=2 \cdot \Im_{1}(z)$ and $\Im_{2}(z-\bar{z})=2 \cdot \Im_{2}(z)$ and $\Im_{3}(z-\bar{z})=2 \cdot \Im_{3}(z)$.

Let us consider z. The functor $|z|$ yielding a real number is defined by:
(Def. 27) $|z|=\sqrt{(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}}$.
We now state a number of propositions:
(65) $\left|0_{\mathbb{H}}\right|=0$.
(66) If $|z|=0$, then $z=0$.
(67) $0 \leq|z|$.
(68) $\left|1_{\mathbb{H}}\right|=1$.
(69) $\quad|i|=1$.
(70) $\quad|j|=1$.
(71) $\quad|k|=1$.
(72) $|-z|=|z|$.
(73) $|\bar{z}|=|z|$.
(74) $0 \leq(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}$.
(75) $\Re(z) \leq|z|$.
(76) $\Im_{1}(z) \leq|z|$.
(77) $\quad \Im_{2}(z) \leq|z|$.
(78) $\quad \Im_{3}(z) \leq|z|$.
(79) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(80) $\quad\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(81) $\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right|$.
(82) $\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|$.
(83) $\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{1}\right|$.
(84) $\left|z_{1}-z_{2}\right|=0$ iff $z_{1}=z_{2}$.
(85) $\quad\left|z_{1}-z_{2}\right| \leq\left|z_{1}-z\right|+\left|z-z_{2}\right|$.
(86) $\quad\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$.
(87) $\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$.
(88) $|z \cdot z|=(\Re(z))^{2}+\left(\Im_{1}(z)\right)^{2}+\left(\Im_{2}(z)\right)^{2}+\left(\Im_{3}(z)\right)^{2}$.
(89) $\quad|z \cdot z|=|z \cdot \bar{z}|$.

References

[1] Grzegorz Bancerek. Arithmetic of non-negative rational numbers. To appear in Formalized Mathematics.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czestaw Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[11] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[13] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received November 14, 2006

