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Summary. In this paper we show that every natural number can be

uniquely represented as a base-b numeral. The formalization is based on the

proof presented in [11]. We also prove selected divisibility criteria in the base-10

numeral system.
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The notation and terminology used in this paper have been introduced in the

following articles: [13], [15], [2], [1], [17], [12], [14], [6], [4], [5], [8], [9], [10], [16],

[7], and [3].

1. Preliminaries

One can prove the following propositions:

(1) For all finite 0-sequences d, e of N holds
∑

(d a e) =
∑

d +
∑

e.

(2) Let S be a sequence of real numbers, d be a finite 0-sequence of N, and

n be a natural number. If d = S↾(n+1), then
∑

d = (
∑

κ

α=0
S(α))κ∈N(n).

(3) For all natural numbers k, l, m holds (k (lκ)κ∈N)↾m is a finite 0-sequence

of N.

(4) Let d, e be finite 0-sequences of N. Suppose len d ≥ 1 and len d = len e

and for every natural number i such that i ∈ dom d holds d(i) ≤ e(i).

Then
∑

d ≤
∑

e.
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(5) Let d be a finite 0-sequence of N and n be a natural number. If for every

natural number i such that i ∈ dom d holds n | d(i), then n |
∑

d.

(6) Let d, e be finite 0-sequences of N and n be a natural number. Suppose

dom d = dom e and for every natural number i such that i ∈ dom d holds

e(i) = d(i) mod n. Then
∑

d mod n =
∑

e mod n.

2. Representation of Numbers in the Base-b Numeral System

Let d be a finite 0-sequence of N and let b be a natural number. The functor

value(d, b) yields a natural number and is defined by the condition (Def. 1).

(Def. 1) There exists a finite 0-sequence d′ of N such that dom d′ = dom d and

for every natural number i such that i ∈ dom d′ holds d′(i) = d(i) · bi and

value(d, b) =
∑

d′.

Let n, b be natural numbers. Let us assume that b > 1. The functor

digits(n, b) yields a finite 0-sequence of N and is defined as follows:

(Def. 2)(i) value(digits(n, b), b) = n and (digits(n, b))(len digits(n, b) − 1) 6= 0

and for every natural number i such that i ∈ domdigits(n, b) holds 0 ≤

(digits(n, b))(i) and (digits(n, b))(i) < b if n 6= 0,

(ii) digits(n, b) = 〈0〉, otherwise.

One can prove the following two propositions:

(7) For all natural numbers n, b such that b > 1 holds len digits(n, b) ≥ 1.

(8) For all natural numbers n, b such that b > 1 holds value(digits(n, b), b) =

n.

3. Selected Divisibility Criteria

One can prove the following propositions:

(9) For all natural numbers n, k such that k = 10n − 1 holds 9 | k.

(10) For all natural numbers n, b such that b > 1 holds b | n iff

(digits(n, b))(0) = 0.

(11) For every natural number n holds 2 | n iff 2 | (digits(n, 10))(0).

(12) For every natural number n holds 3 | n iff 3 |
∑

digits(n, 10).

(13) For every natural number n holds 5 | n iff 5 | (digits(n, 10))(0).

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
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