
FORMALIZED MATHEMATICS

Volume 14, Number 4, Pages 187–206

University of Bia lystok, 2006

Recognizing Chordal Graphs:

Lex BFS and MCS1

Broderick Arneson

University of Alberta

Edmonton, Canada

Piotr Rudnicki

University of Alberta

Edmonton, Canada

Summary. We are formalizing the algorithm for recognizing chordal

graphs by lexicographic breadth-first search as presented in [13, Section 3 of

Chapter 4, pp. 81–84]. Then we follow with a formalization of another algorithm

serving the same end but based on maximum cardinality search as presented by

Tarjan and Yannakakis [25].

This work is a part of the MSc work of the first author under supervision of

the second author. We would like to thank one of the anonymous reviewers for

very useful suggestions.

MML identifier: LEXBFS, version: 7.8.03 4.75.958

The notation and terminology used in this paper are introduced in the following

articles: [28], [11], [26], [32], [33], [35], [30], [10], [7], [8], [20], [29], [4], [2], [14],

[23], [12], [3], [6], [9], [18], [15], [19], [16], [17], [24], [21], [1], [5], [31], [27], [22],

and [34].

1. Preliminaries

The following propositions are true:

(1) Let A, B be elements of N, X be a non empty set, and

F be a function from N into X. If F is one-to-one, then

{F (w);w ranges over elements of N: A ≤ w ∧ w ≤ A + B} = B + 1.

(2) For all natural numbers n, m, k such that m ≤ k and n < m holds

k −′ m < k −′ n.

1This work has been partially supported by the NSERC grant OGP 9207.

187
c© 2006 University of Bia lystok

ISSN 1426–2630



188 broderick arneson and piotr rudnicki

(3) For all natural numbers n, k such that n < k holds (k −′ (n + 1)) + 1 =

k −′ n.

(4) For all natural numbers n, m, k such that k 6= 0 holds (n + m · k)÷ k =

(n ÷ k) + m.

Let S be a set. We say that S has finite elements if and only if:

(Def. 1) Every element of S is finite.

Let us note that there exists a set which is non empty and has finite elements

and there exists a subset of 2N which is non empty and finite and has finite

elements.

Let S be a set with finite elements. One can check that every element of S

is finite.

Let f , g be functions. The functor f [∪]g yielding a function is defined by:

(Def. 2) dom(f [∪]g) = dom f ∪ dom g and for every set x such that x ∈ dom f ∪
dom g holds (f [∪]g)(x) = f(x) ∪ g(x).

The following three propositions are true:

(5) For all natural numbers m, n, k holds m ∈ Seg k\Seg(k−′n) iff k−′n < m

and m ≤ k.

(6) For all natural numbers n, k, m such that n ≤ m holds Seg k \ Seg(k −′

n) ⊆ Seg k \ Seg(k −′ m).

(7) For all natural numbers n, k such that n < k holds (Seg k \ Seg(k −′

n)) ∪ {k −′ n} = Seg k \ Seg(k −′ (n + 1)).

Let f be a binary relation. We say that f is natsubset yielding if and only

if:

(Def. 3) rng f ⊆ 2N.

Let us mention that there exists a function which is finite-yielding and nat-

subset yielding.

Let f be a finite-yielding natsubset yielding function and let x be a set.

Then f(x) is a finite subset of N.

One can prove the following proposition

(8) For every ordinal number X and for all finite subsets a, b of X such that

a 6= b holds (a, 1) -bag 6= (b, 1) -bag .

Let F be a natural-yielding function, let S be a set, and let k be a natural

number. The functor F .incSubset(S, k) yielding a natural-yielding function is

defined by the conditions (Def. 4).

(Def. 4)(i) dom(F .incSubset(S, k)) = domF, and

(ii) for every set y holds if y ∈ S and y ∈ dom F,

then (F .incSubset(S, k))(y) = F (y) + k and if y /∈ S, then

(F .incSubset(S, k))(y) = F (y).



recognizing chordal graphs: . . . 189

Let n be an ordinal number, let T be a connected term order of n, and let

B be a non empty finite subset of Bags n. The functor max(B,T ) yields a bag

of n and is defined as follows:

(Def. 5) max(B,T ) ∈ B and for every bag x of n such that x ∈ B holds x ≤T

max(B,T ).

Let O be an ordinal number. Observe that InvLexOrderO is connected.

2. Miscellany on Graphs

Let G be a graph. Note that there exists a vertex sequence of G which is

non empty and one-to-one.

Let G be a graph and let V be a non empty vertex sequence of G. A walk

of G is called a walk of V if:

(Def. 6) It.vertexSeq() = V.

Let G be a graph and let V be a non empty one-to-one vertex sequence of

G. One can check that every walk of V is path-like.

We now state two propositions:

(9) For every graph G and for all walks W1, W2 of G such that W1 is trivial

and W1.last() = W2.first() holds W1.append(W2) = W2.

(10) Let G, H be graphs, A, B, C be sets, G1 be a subgraph of G induced by

A, H1 be a subgraph of H induced by B, G2 be a subgraph of G1 induced

by C, and H2 be a subgraph of H1 induced by C. Suppose G =G H and

A ⊆ B and C ⊆ A and C is a non empty subset of the vertices of G. Then

G2 =G H2.

Let G be a v-graph. We say that G is natural v-labeled if and only if:

(Def. 7) The vlabel of G is natural-yielding.

3. Graphs with Two Vertex Labels

The natural number V2-LabelSelector is defined by:

(Def. 8) V2-LabelSelector = 8.

Let G be a graph structure. We say that G is v2-labeled if and only if:

(Def. 9) V2-LabelSelector ∈ dom G and there exists a function f such that

G(V2-LabelSelector) = f and dom f ⊆ the vertices of G.

Let us note that there exists a graph structure which is graph-like, weighted,

elabeled, vlabeled, and v2-labeled.

A v2-graph is a v2-labeled graph. A vv-graph is a vlabeled v2-labeled graph.

Let G be a v2-graph. The v2-label of G yields a function and is defined as

follows:



190 broderick arneson and piotr rudnicki

(Def. 10) The v2-label of G = G(V2-LabelSelector).

Next we state the proposition

(11) For every v2-graph G holds dom(the v2-label of G) ⊆ the vertices of G.

Let G be a graph and let X be a set. Note that G.set(V2-LabelSelector,X)

is graph-like.

We now state the proposition

(12) For every graph G and for every set X holds

G.set(V2-LabelSelector,X) =G G.

Let G be a finite graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is finite.

Let G be a loopless graph and let X be a set.

Observe that G.set(V2-LabelSelector,X) is loopless.

Let G be a trivial graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is trivial.

Let G be a non trivial graph and let X be a set. One can check that

G.set(V2-LabelSelector,X) is non trivial.

Let G be a non-multi graph and let X be a set. One can check that

G.set(V2-LabelSelector,X) is non-multi.

Let G be a non-directed-multi graph and let X be a set. One can verify that

G.set(V2-LabelSelector,X) is non-directed-multi.

Let G be a connected graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is connected.

Let G be an acyclic graph and let X be a set.

One can verify that G.set(V2-LabelSelector,X) is acyclic.

Let G be a v-graph and let X be a set.

One can check that G.set(V2-LabelSelector,X) is vlabeled.

Let G be a e-graph and let X be a set. Observe that G.set(V2-LabelSelector,X)

is elabeled.

Let G be a w-graph and let X be a set. Observe that G.set(V2-LabelSelector,X)

is weighted.

Let G be a v2-graph and let X be a set.

One can verify that G.set(VLabelSelector,X) is v2-labeled.

Let G be a graph, let Y be a set, and let X be a partial function from the

vertices of G to Y . Observe that G.set(V2-LabelSelector,X) is v2-labeled.

Let G be a graph and let X be a many sorted set indexed by the vertices of

G. Observe that G.set(V2-LabelSelector,X) is v2-labeled.

Let G be a graph. One can verify that G.set(V2-LabelSelector, ∅) is v2-

labeled.

Let G be a v2-graph. We say that G is natural v2-labeled if and only if:

(Def. 11) The v2-label of G is natural-yielding.

We say that G is finite v2-labeled if and only if:



recognizing chordal graphs: . . . 191

(Def. 12) The v2-label of G is finite-yielding.

We say that G is natsubset v2-labeled if and only if:

(Def. 13) The v2-label of G is natsubset yielding.

One can check that there exists a weighted elabeled vlabeled v2-labeled

graph which is finite, natural v-labeled, finite v2-labeled, natsubset v2-labeled,

and chordal and there exists a weighted elabeled vlabeled v2-labeled graph which

is finite, natural v-labeled, natural v2-labeled, and chordal.

Let G be a natural v-labeled v-graph. Observe that the vlabel of G is

natural-yielding.

Let G be a natural v2-labeled v2-graph. Observe that the v2-label of G is

natural-yielding.

Let G be a finite v2-labeled v2-graph. Observe that the v2-label of G is

finite-yielding.

Let G be a natsubset v2-labeled v2-graph. One can verify that the v2-label

of G is natsubset yielding.

Let G be a vv-graph and let v, x be sets. One can check that G.labelVertex(v, x)

is v2-labeled.

Next we state the proposition

(13) For every vv-graph G and for all sets v, x holds the v2-label of G = the

v2-label of G.labelVertex(v, x).

Let G be a natural v-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v-labeled.

Let G be a natural v2-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v2-labeled.

Let G be a finite v2-labeled vv-graph, let v be a set, and let x be a natural

number. Note that G.labelVertex(v, x) is finite v2-labeled.

Let G be a natsubset v2-labeled vv-graph, let v be a set, and let x be a

natural number. One can check that G.labelVertex(v, x) is natsubset v2-labeled.

Let G be a graph. Note that there exists a subgraph of G which is vlabeled

and v2-labeled.

Let G be a v2-graph and let G2 be a v2-labeled subgraph of G. We say that

G2 inherits v2-label if and only if:

(Def. 14) The v2-label of G2 = (the v2-label of G)↾(the vertices of G2).

Let G be a v2-graph. Note that there exists a v2-labeled subgraph of G

which inherits v2-label.

Let G be a v2-graph. A v2-subgraph of G is a v2-labeled subgraph of G

inheriting v2-label.

Let G be a vv-graph. Note that there exists a vlabeled v2-labeled subgraph

of G which inherits vlabel and v2-label.

Let G be a vv-graph. A vv-subgraph of G is a vlabeled v2-labeled subgraph

of G inheriting vlabel and v2-label.



192 broderick arneson and piotr rudnicki

Let G be a natural v-labeled v-graph. Note that every v-subgraph of G is

natural v-labeled.

Let G be a graph and let V , E be sets. Observe that there exists a subgraph

of G induced by V and E which is weighted, elabeled, vlabeled, and v2-labeled.

Let G be a vv-graph and let V , E be sets. Observe that there exists a

vlabeled v2-labeled subgraph of G induced by V and E which inherits vlabel

and v2-label.

Let G be a vv-graph and let V , E be sets. A (V,E)-induced vv-subgraph of

G is a vlabeled v2-labeled subgraph of G induced by V and E inheriting vlabel

and v2-label.

Let G be a vv-graph and let V be a set. A V -induced vv-subgraph of G is

a (V,G.edgesBetween(V ))-induced vv-subgraph of G.

4. More on Graph Sequences

Let s be a many sorted set indexed by N. We say that s is iterative if and

only if:

(Def. 15) For all natural numbers k, n such that s(k) = s(n) holds s(k + 1) =

s(n + 1).

Let G3 be a many sorted set indexed by N. We say that G3 is eventually

constant if and only if:

(Def. 16) There exists a natural number n such that for every natural number m

such that n ≤ m holds G3(n) = G3(m).

Let us observe that there exists a many sorted set indexed by N which is

halting, iterative, and eventually constant.

The following proposition is true

(14) For every many sorted set G4 indexed by N such that G4 is halting and

iterative holds G4 is eventually constant.

One can check that every many sorted set indexed by N which is halting and

iterative is also eventually constant.

The following proposition is true

(15) For every many sorted set G4 indexed by N such that G4 is eventually

constant holds G4 is halting.

Let us mention that every many sorted set indexed by N which is eventually

constant is also halting.

One can prove the following two propositions:

(16) Let G4 be an iterative eventually constant many sorted set indexed

by N and n be a natural number. If G4.Lifespan() ≤ n, then

G4(G4.Lifespan()) = G4(n).



recognizing chordal graphs: . . . 193

(17) Let G4 be an iterative eventually constant many sorted set indexed by

N and n, m be natural numbers. If G4.Lifespan() ≤ n and n ≤ m, then

G4(m) = G4(n).

Let G3 be a v-graph sequence. We say that G3 is natural v-labeled if and

only if:

(Def. 17) For every natural number x holds G3(x) is natural v-labeled.

Let G3 be a graph sequence. We say that G3 is chordal if and only if:

(Def. 18) For every natural number x holds G3(x) is chordal.

We say that G3 has fixed vertices if and only if:

(Def. 19) For all natural numbers n, m holds the vertices of G3(n) = the vertices

of G3(m).

We say that G3 is v2-labeled if and only if:

(Def. 20) For every natural number x holds G3(x) is v2-labeled.

Let us observe that there exists a graph sequence which is weighted, elabeled,

vlabeled, and v2-labeled.

A v2-graph sequence is a v2-labeled graph sequence. A vv-graph sequence

is a vlabeled v2-labeled graph sequence.

Let G5 be a v2-graph sequence and let x be a natural number. Note that

G5(x) is v2-labeled.

Let G5 be a v2-graph sequence. We say that G5 is natural v2-labeled if and

only if:

(Def. 21) For every natural number x holds G5(x) is natural v2-labeled.

We say that G5 is finite v2-labeled if and only if:

(Def. 22) For every natural number x holds G5(x) is finite v2-labeled.

We say that G5 is natsubset v2-labeled if and only if:

(Def. 23) For every natural number x holds G5(x) is natsubset v2-labeled.

Let us mention that there exists a weighted elabeled vlabeled v2-labeled

graph sequence which is finite, natural v-labeled, finite v2-labeled, natsub-

set v2-labeled, and chordal and there exists a weighted elabeled vlabeled v2-

labeled graph sequence which is finite, natural v-labeled, natural v2-labeled,

and chordal.

Let G4 be a v-graph sequence and let x be a natural number. Then G4(x)

is a v-graph.

Let G5 be a natural v-labeled v-graph sequence and let x be a natural

number. Observe that G5(x) is natural v-labeled.

Let G5 be a natural v2-labeled v2-graph sequence and let x be a natural

number. One can check that G5(x) is natural v2-labeled.

Let G5 be a finite v2-labeled v2-graph sequence and let x be a natural

number. One can verify that G5(x) is finite v2-labeled.



194 broderick arneson and piotr rudnicki

Let G5 be a natsubset v2-labeled v2-graph sequence and let x be a natural

number. Note that G5(x) is natsubset v2-labeled.

Let G5 be a chordal graph sequence and let x be a natural number. One

can check that G5(x) is chordal.

Let G4 be a v-graph sequence and let n be a natural number. Then G4(n)

is a v-graph.

Let G4 be a finite v-graph sequence and let n be a natural number. One can

check that G4(n) is finite.

Let G4 be a vv-graph sequence and let n be a natural number. Then G4(n)

is a vv-graph.

Let G4 be a finite vv-graph sequence and let n be a natural number. One

can verify that G4(n) is finite.

Let G4 be a chordal vv-graph sequence and let n be a natural number. Note

that G4(n) is chordal.

Let G4 be a natural v-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natural v-labeled.

Let G4 be a finite v2-labeled vv-graph sequence and let n be a natural

number. Note that G4(n) is finite v2-labeled.

Let G4 be a natsubset v2-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natsubset v2-labeled.

Let G4 be a natural v2-labeled vv-graph sequence and let n be a natural

number. Observe that G4(n) is natural v2-labeled.

5. Vertices Numbering Sequences

Let G3 be a v-graph sequence. We say that G3 has initially empty v-label if

and only if:

(Def. 24) The vlabel of G3(0) = ∅.

We say that G3 is adding one at a step if and only if the condition (Def. 25) is

satisfied.

(Def. 25) Let n be a natural number. Suppose n < G3.Lifespan(). Then there

exists a set w such that w /∈ dom (the vlabel of G3(n)) and the vlabel of

G3(n + 1) = (the vlabel of G3(n))+·(w 7−→. (G3.Lifespan() −′ n)).

Let G3 be a v-graph sequence. We say that G3 is v-label numbering if and

only if the condition (Def. 26) is satisfied.

(Def. 26) G3 is iterative, eventually constant, finite, natural v-labeled, and adding

one at a step and has fixed vertices and initially empty v-label.

One can check that there exists a v-graph sequence which is iterative, even-

tually constant, finite, natural v-labeled, and adding one at a step and has fixed

vertices and initially empty v-label.



recognizing chordal graphs: . . . 195

Let us observe that there exists a v-graph sequence which is v-label num-

bering.

One can check the following observations:

∗ every v-graph sequence which is v-label numbering is also iterative,

∗ every v-graph sequence which is v-label numbering is also eventually

constant,

∗ every v-graph sequence which is v-label numbering is also finite,

∗ every v-graph sequence which is v-label numbering has also fixed vertices,

∗ every v-graph sequence which is v-label numbering is also natural v-

labeled,

∗ every v-graph sequence which is v-label numbering has also initially

empty v-label, and

∗ every v-graph sequence which is v-label numbering is also adding one at

a step.

A v-label numbering sequence is a v-label numbering v-graph sequence.

Let G3 be a v-label numbering sequence and let n be a natural number. The

functor G3 .PickedAt n yields a set and is defined by:

(Def. 27)(i) G3 .PickedAt n = choose(the vertices of G3(0)) if n ≥ G3.Lifespan(),

(ii) G3 .PickedAt n /∈ dom (the vlabel of G3(n)) and the vlabel of G3(n +

1) = (the vlabel of G3(n))+·((G3 .PickedAt n)7−→. (G3.Lifespan() −′ n)),

otherwise.

The following propositions are true:

(18) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then G3 .PickedAt n ∈ G3(n + 1).labeledV() and

G3(n + 1).labeledV() = G3(n).labeledV() ∪ {G3 .PickedAt n}.

(19) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then (the vlabel of G3(n + 1))(G3 .PickedAt n) =

G3.Lifespan() −′ n.

(20) For every v-label numbering sequence G3 and for every natural number

n such that n ≤ G3.Lifespan() holds card(G3(n).labeledV()) = n.

(21) For every v-label numbering sequence G3 and for every natural number n

holds rng (the vlabel of G3(n)) = Seg(G3.Lifespan())\Seg(G3.Lifespan()−′

n).

(22) Let G3 be a v-label numbering sequence, n be a natural number, and

x be a set. Then (the vlabel of G3(n))(x) ≤ G3.Lifespan() and if x ∈
G3(n).labeledV(), then 1 ≤ (the vlabel of G3(n))(x).

(23) Let G3 be a v-label numbering sequence and n, m be natural numbers.

Suppose G3.Lifespan() −′ n < m and m ≤ G3.Lifespan(). Then there

exists a vertex v of G3(n) such that v ∈ G3(n).labeledV() and (the vlabel



196 broderick arneson and piotr rudnicki

of G3(n))(v) = m.

(24) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If m ≤ n, then the vlabel of G3(m) ⊆ the vlabel of G3(n).

(25) For every v-label numbering sequence G3 and for every natural number

n holds the vlabel of G3(n) is one-to-one.

(26) Let G3 be a v-label numbering sequence, m, n be natural numbers, and

v be a set. Suppose v ∈ G3(m).labeledV() and v ∈ G3(n).labeledV().

Then (the vlabel of G3(m))(v) = (the vlabel of G3(n))(v).

(27) Let G3 be a v-label numbering sequence, v be a set, and m, n be natural

numbers. If v ∈ G3(m).labeledV() and (the vlabel of G3(m))(v) = n, then

G3 .PickedAt(G3.Lifespan() −′ n) = v.

(28) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If n < G3.Lifespan() and n < m, then G3 .PickedAt n ∈ G3(m).labeledV()

and (the vlabel of G3(m))(G3 .PickedAt n) = G3.Lifespan() −′ n.

(29) Let G3 be a v-label numbering sequence, m be a natural number, and v

be a set. Suppose v ∈ G3(m).labeledV(). Then G3.Lifespan()−′(the vlabel

of G3(m))(v) < m and G3.Lifespan() −′ m < (the vlabel of G3(m))(v).

(30) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then b ∈

G3(G3.Lifespan() −′ (the vlabel of G3(i))(a)).labeledV().

(31) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then a /∈
G3(G3.Lifespan() −′ (the vlabel of G3(i))(b)).labeledV().

6. Lexicographical Breadth-First Search

Let G be a graph. The functor LexBFS:Init G yields a natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 28) LexBFS:Init G = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the

vertices of G) 7−→ ∅).

Let G be a finite graph. Then LexBFS:InitG is a finite natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph.

Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Let

us assume that dom (the v2-label of G) = the vertices of G. The functor

LexBFS:PickUnnumbered G yields a vertex of G and is defined by:

(Def. 29)(i) LexBFS:PickUnnumbered G = choose(the vertices of G) if dom(the

vlabel of G) = the vertices of G,



recognizing chordal graphs: . . . 197

(ii) there exists a non empty finite subset S of 2N and there exists a non

empty finite subset B of Bags N and there exists a function F such that S =

rng F and F = (the v2-label of G)↾((the vertices of G)\dom (the vlabel of

G)) and for every finite subset x of N such that x ∈ S holds (x, 1) -bag ∈ B

and for every set x such that x ∈ B there exists a finite subset y of N

such that y ∈ S and x = (y, 1) -bag and LexBFS:PickUnnumberedG =

choose(F−1({supportmax(B, InvLexOrderN)})), otherwise.

Let G be a vv-graph, let v be a set, and let k be a natural number. The

functor LexBFS:LabelAdjacent(G, v, k) yielding a vv-graph is defined as follows:

(Def. 30) LexBFS:LabelAdjacent(G, v, k) = G.set(V2-LabelSelector, (the v2-label

of G)[∪]((G.adjacentSet({v})) \ dom(the vlabel of G) 7−→ {k})).

Next we state four propositions:

(32) Let G be a vv-graph, v, x be sets, and k be a natural number. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(33) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(34) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ G.adjacentSet({v}) and x /∈ dom (the vlabel of G). Then (the v2-label

of LexBFS:LabelAdjacent(G, v, k))(x) = (the v2-label of G)(x) ∪ {k}.

(35) Let G be a vv-graph, v be a set, and k be a natural number. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

LexBFS:LabelAdjacent(G, v, k)) = the vertices of G.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let k be a natural number. Then

LexBFS:LabelAdjacent(G, v, k) is a finite natural v-labeled finite v2-labeled nat-

subset v2-labeled vv-graph.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let n be a natural number. The func-

tor LexBFS:Update(G, v, n) yielding a finite natural v-labeled finite v2-labeled

natsubset v2-labeled vv-graph is defined by:

(Def. 31) LexBFS:Update(G, v, n) =

LexBFS:LabelAdjacent(G.labelVertex(v,G.order()−′n), v,G.order()−′n).

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph. The functor LexBFS:Step G yields a finite natural v-labeled finite

v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 32) LexBFS:Step G =







G, if G.order() ≤ card dom (the vlabel of G),

LexBFS:Update(G,LexBFS:PickUnnumbered G,

card dom (the vlabel of G)), otherwise.



198 broderick arneson and piotr rudnicki

Let G be a finite graph. The functor LexBFS:CSeqG yields a finite natural

v-labeled finite v2-labeled natsubset v2-labeled vv-graph sequence and is defined

by:

(Def. 33) (LexBFS:CSeq G)(0) = LexBFS:Init G and for every natural number n

holds (LexBFS:CSeq G)(n + 1) = LexBFS:Step(LexBFS:CSeq G)(n).

We now state the proposition

(36) For every finite graph G holds LexBFS:CSeq G is iterative.

Let G be a finite graph. Observe that LexBFS:CSeqG is iterative.

Next we state a number of propositions:

(37) For every graph G holds the vlabel of LexBFS:Init G = ∅.

(38) Let G be a graph and v be a set. Then dom (the v2-

label of LexBFS:Init G) = the vertices of G and (the v2-label of

LexBFS:Init G)(v) = ∅.

(39) For every graph G holds G =G LexBFS:Init G.

(40) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph and x

be a set. Suppose that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then ((the v2-label of G)(x), 1) -bag ≤InvLexOrder N ((the v2-label of

G)(LexBFS:PickUnnumbered G), 1) -bag .

(41) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Sup-

pose dom (the v2-label of G) = the vertices of G and dom (the vlabel of

G) 6= the vertices of G. Then LexBFS:PickUnnumbered G /∈ dom(the

vlabel of G).

(42) For every finite graph G and for every natural number n holds

(LexBFS:CSeq G)(n) =G G.

(43) For every finite graph G and for all natural numbers m, n holds

(LexBFS:CSeq G)(m) =G (LexBFS:CSeqG)(n).

(44) Let G be a finite graph and n be a natural number. Sup-

pose card dom (the vlabel of (LexBFS:CSeqG)(n)) < G.order().

Then the vlabel of (LexBFS:CSeq G)(n + 1) = (the vlabel of

(LexBFS:CSeq G)(n))+·(LexBFS:PickUnnumbered(LexBFS:CSeqG)(n)

7−→. (G.order() −′ card dom (the vlabel of (LexBFS:CSeq G)(n)))).

(45) For every finite graph G and for every natural number n holds dom(the

v2-label of (LexBFS:CSeq G)(n)) = the vertices of (LexBFS:CSeqG)(n).

(46) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (LexBFS:CSeq G)(n)) = n.

(47) For every finite graph G and for every natural number n

such that G.order() ≤ n holds (LexBFS:CSeq G)(G.order()) =



recognizing chordal graphs: . . . 199

(LexBFS:CSeq G)(n).

(48) For every finite graph G and for all natural numbers m, n such

that G.order() ≤ m and m ≤ n holds (LexBFS:CSeq G)(m) =

(LexBFS:CSeq G)(n).

(49) For every finite graph G holds LexBFS:CSeq G is eventually constant.

Let G be a finite graph. Note that LexBFS:CSeq G is eventually constant.

We now state two propositions:

(50) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (LexBFS:CSeq G)(n)) = the vertices of (LexBFS:CSeqG)(n) if

and only if G.order() ≤ n.

(51) For every finite graph G holds (LexBFS:CSeq G).Lifespan() = G.order().

Let G be a finite chordal graph and let i be a natural number. One can

check that (LexBFS:CSeqG)(i) is chordal.

Let G be a finite chordal graph. One can check that LexBFS:CSeq G is

chordal.

One can prove the following proposition

(52) For every finite graph G holds LexBFS:CSeq G is v-label numbering.

Let G be a finite graph. Note that LexBFS:CSeq G is v-label numbering.

We now state several propositions:

(53) For every finite graph G and for every natural number n

such that n < G.order() holds LexBFS:CSeqG .PickedAt n =

LexBFS:PickUnnumbered(LexBFS:CSeq G)(n).

(54) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (LexBFS:CSeq G)(n) such that

(i) w = LexBFS:PickUnnumbered(LexBFS:CSeq G)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom (the vla-

bel of (LexBFS:CSeq G)(n)), then (the v2-label of (LexBFS:CSeq G)(n +

1))(v) = (the v2-label of (LexBFS:CSeqG)(n))(v)∪{G.order()−′n} and if

v /∈ G.adjacentSet({w}) or v ∈ dom (the vlabel of (LexBFS:CSeq G)(n)),

then (the v2-label of (LexBFS:CSeq G)(n + 1))(v) = (the v2-label of

(LexBFS:CSeq G)(n))(v).

(55) Let G be a finite graph, i be a natural number, and v be a set. Then (the

v2-label of (LexBFS:CSeq G)(i))(v) ⊆ Seg(G.order())\Seg(G.order()−′ i).

(56) Let G be a finite graph, x be a set, and i, j be natural numbers. If

i ≤ j, then (the v2-label of (LexBFS:CSeq G)(i))(x) ⊆ (the v2-label of

(LexBFS:CSeq G)(j))(x).

(57) Let G be a finite graph, m, n be natural numbers, and x,

y be sets. Suppose n < G.order() and n < m and y =

LexBFS:PickUnnumbered(LexBFS:CSeq G)(n) and x /∈ dom(the vlabel of



200 broderick arneson and piotr rudnicki

(LexBFS:CSeq G)(n)) and x ∈ G.adjacentSet({y}). Then G.order()−′ n ∈
(the v2-label of (LexBFS:CSeq G)(m))(x).

(58) Let G be a finite graph and m, n be natural numbers. Suppose

m < n. Let x be a set. Suppose G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeq G)(m + 1))(x). Then G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeq G)(n))(x).

(59) Let G be a finite graph and m, n, k be natural numbers. Suppose

k < n and n ≤ m. Let x be a set. Suppose G.order() −′ k /∈ (the v2-

label of (LexBFS:CSeq G)(n))(x). Then G.order() −′ k /∈ (the v2-label of

(LexBFS:CSeq G)(m))(x).

(60) Let G be a finite graph, m, n be natural numbers, and x

be a vertex of (LexBFS:CSeq G)(m). Suppose n ∈ (the v2-

label of (LexBFS:CSeqG)(m))(x). Then there exists a vertex y of

(LexBFS:CSeq G)(m) such that LexBFS:PickUnnumbered(LexBFS:CSeq G)

(G.order()−′n) = y and y /∈ dom (the vlabel of (LexBFS:CSeq G)(G.order()−′

n)) and x ∈ G.adjacentSet({y}).

Let G4 be a finite natural v-labeled vv-graph sequence. Then G4.Result() is

a finite natural v-labeled vv-graph.

The following four propositions are true:

(61) For every finite graph G holds (LexBFS:CSeq G).Result().labeledV() =

the vertices of G.

(62) For every finite graph G holds (the vlabel of (LexBFS:CSeqG).Result())−1

is a vertex scheme of G.

(63) Let G be a finite graph, i, j be natural numbers, and a, b be vertices of

(LexBFS:CSeq G)(i). Suppose that

(i) a ∈ dom(the vlabel of (LexBFS:CSeqG)(i)),

(ii) b ∈ dom (the vlabel of (LexBFS:CSeq G)(i)),

(iii) (the vlabel of (LexBFS:CSeq G)(i))(a) < (the vlabel of

(LexBFS:CSeq G)(i))(b), and

(iv) j = G.order() −′ (the vlabel of (LexBFS:CSeqG)(i))(b).

Then ((the v2-label of (LexBFS:CSeq G)(j))(a), 1) -bag ≤InvLexOrder N

((the v2-label of (LexBFS:CSeq G)(j))(b), 1) -bag .

(64) Let G be a finite graph, i, j be natural numbers, and

v be a vertex of (LexBFS:CSeqG)(i). Suppose j ∈ (the

v2-label of (LexBFS:CSeqG)(i))(v). Then there exists a vertex

w of (LexBFS:CSeq G)(i) such that w ∈ dom (the vlabel of

(LexBFS:CSeq G)(i)) and (the vlabel of (LexBFS:CSeqG)(i))(w) = j and

v ∈ G.adjacentSet({w}).

Let G be a natural v-labeled v-graph. We say that G has property L3 if

and only if the condition (Def. 34) is satisfied.



recognizing chordal graphs: . . . 201

(Def. 34) Let a, b, c be vertices of G. Suppose that a ∈ dom(the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom(the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom(the vlabel of G),

(ii) (the vlabel of G)(c) < (the vlabel of G)(d),

(iii) b and d are adjacent,

(iv) a and d are not adjacent, and

(v) for every vertex e of G such that e 6= d and e and b are adjacent and e

and a are not adjacent holds (the vlabel of G)(e) < (the vlabel of G)(d).

One can prove the following three propositions:

(65) For every finite graph G and for every natural number n holds

(LexBFS:CSeq G)(n) has property L3 .

(66) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property L3 and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.

(67) For every finite chordal vv-graph G holds

(the vlabel of (LexBFS:CSeq G).Result())−1 is a perfect vertex scheme of

G.

7. The Maximum Cardinality Search Algorithm

Let G be a finite graph. The functor MCS:InitG yields a finite natural

v-labeled natural v2-labeled vv-graph and is defined by:

(Def. 35) MCS:InitG = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the ver-

tices of G) 7−→ 0).

Let G be a finite natural v2-labeled vv-graph. Let us assume that dom (the

v2-label of G) = the vertices of G. The functor MCS:PickUnnumberedG yields

a vertex of G and is defined by:

(Def. 36)(i) MCS:PickUnnumberedG = choose(the vertices of G) if dom(the vla-

bel of G) = the vertices of G,

(ii) there exists a finite non empty natural-membered set S and there exists

a function F such that S = rng F and F = (the v2-label of G)↾((the

vertices of G) \ dom (the vlabel of G)) and MCS:PickUnnumberedG =

choose(F−1({max S})), otherwise.

Let G be a finite natural v2-labeled vv-graph and let v be a set. The func-

tor MCS:LabelAdjacent(G, v) yields a finite natural v2-labeled vv-graph and is

defined by:



202 broderick arneson and piotr rudnicki

(Def. 37) MCS:LabelAdjacent(G, v) = G.set(V2-LabelSelector, (the v2-label of

G) .incSubset((G.adjacentSet({v})) \ dom (the vlabel of G), 1)).

Let G be a finite natural v-labeled natural v2-labeled vv-graph and let v

be a vertex of G. Then MCS:LabelAdjacent(G, v) is a finite natural v-labeled

natural v2-labeled vv-graph.

Let G be a finite natural v-labeled natural v2-labeled vv-graph, let v be a

vertex of G, and let n be a natural number. The functor MCS:Update(G, v, n)

yielding a finite natural v-labeled natural v2-labeled vv-graph is defined as fol-

lows:

(Def. 38) MCS:Update(G, v, n) = MCS:LabelAdjacent(G.labelVertex(v,G.order()− ′

n), v).

Let G be a finite natural v-labeled natural v2-labeled vv-graph. The functor

MCS:Step G yielding a finite natural v-labeled natural v2-labeled vv-graph is

defined by:

(Def. 39) MCS:Step G =







G, if G.order() ≤ card dom (the vlabel of G),

MCS:Update(G,MCS:PickUnnumbered G, card dom

(the vlabel of G)), otherwise.

Let G be a finite graph. The functor MCS:CSeqG yields a finite natural

v-labeled natural v2-labeled vv-graph sequence and is defined by:

(Def. 40) (MCS:CSeqG)(0) = MCS:InitG and for every natural number n holds

(MCS:CSeqG)(n + 1) = MCS:Step(MCS:CSeqG)(n).

The following proposition is true

(68) For every finite graph G holds MCS:CSeqG is iterative.

Let G be a finite graph. Observe that MCS:CSeqG is iterative.

We now state a number of propositions:

(69) For every finite graph G holds the vlabel of MCS:InitG = ∅.

(70) Let G be a finite graph and v be a set. Then dom (the v2-label of

MCS:InitG) = the vertices of G and (the v2-label of MCS:InitG)(v) = 0.

(71) For every finite graph G holds G =G MCS:InitG.

(72) Let G be a finite natural v2-labeled vv-graph and x be a set. Suppose

that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then (the v2-label of G)(x) ≤ (the v2-label of G)(MCS:PickUnnumbered G).

(73) Let G be a finite natural v2-labeled vv-graph. Suppose dom (the v2-label

of G) = the vertices of G and dom (the vlabel of G) 6= the vertices of G.

Then MCS:PickUnnumbered G /∈ dom (the vlabel of G).

(74) Let G be a finite natural v2-labeled vv-graph and v, x be sets. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of



recognizing chordal graphs: . . . 203

MCS:LabelAdjacent(G, v))(x).

(75) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

MCS:LabelAdjacent(G, v))(x).

(76) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the v2-label of G) and x ∈ G.adjacentSet({v}) and x /∈ dom (the

vlabel of G). Then (the v2-label of MCS:LabelAdjacent(G, v))(x) = (the

v2-label of G)(x) + 1.

(77) Let G be a finite natural v2-labeled vv-graph and v be a set. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

MCS:LabelAdjacent(G, v)) = the vertices of G.

(78) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) =G G.

(79) For every finite graph G and for all natural numbers m, n holds

(MCS:CSeqG)(m) =G (MCS:CSeqG)(n).

Let G be a finite chordal graph and let n be a natural number. Observe that

(MCS:CSeqG)(n) is chordal.

Let G be a finite chordal graph. Observe that MCS:CSeqG is chordal.

One can prove the following propositions:

(80) For every finite graph G and for every natural number n holds dom (the

v2-label of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n).

(81) Let G be a finite graph and n be a natural number. Suppose

card dom (the vlabel of (MCS:CSeqG)(n)) < G.order(). Then the vlabel

of (MCS:CSeqG)(n + 1) = (the vlabel of (MCS:CSeqG)(n))

+·(MCS:PickUnnumbered(MCS:CSeqG)(n)7−→. (G.order()−′card dom (the

vlabel of (MCS:CSeqG)(n)))).

(82) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (MCS:CSeqG)(n)) = n.

(83) For every finite graph G and for every natural number n such that

G.order() ≤ n holds (MCS:CSeqG)(G.order()) = (MCS:CSeqG)(n).

(84) For every finite graph G and for all natural numbers m, n such that

G.order() ≤ m and m ≤ n holds (MCS:CSeqG)(m) = (MCS:CSeqG)(n).

(85) For every finite graph G holds MCS:CSeqG is eventually constant.

Let G be a finite graph. Observe that MCS:CSeqG is eventually constant.

The following propositions are true:

(86) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n) if and

only if G.order() ≤ n.

(87) For every finite graph G holds (MCS:CSeqG).Lifespan() = G.order().



204 broderick arneson and piotr rudnicki

(88) For every finite graph G holds MCS:CSeqG is v-label numbering.

Let G be a finite graph. Note that MCS:CSeqG is v-label numbering.

Next we state three propositions:

(89) For every finite graph G and for every natural number n such that n <

G.order() holds MCS:CSeqG .PickedAt n =

MCS:PickUnnumbered(MCS:CSeqG)(n).

(90) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (MCS:CSeqG)(n) such that

(i) w = MCS:PickUnnumbered(MCS:CSeqG)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom(the vlabel

of (MCS:CSeqG)(n)), then (the v2-label of (MCS:CSeqG)(n + 1))(v) =

(the v2-label of (MCS:CSeqG)(n))(v) + 1 and if v /∈ G.adjacentSet({w})
or v ∈ dom (the vlabel of (MCS:CSeqG)(n)), then (the v2-label of

(MCS:CSeqG)(n + 1))(v) = (the v2-label of (MCS:CSeqG)(n))(v).

(91) Let G be a finite graph, n be a natural number, and x be a set. Sup-

pose x /∈ dom (the vlabel of (MCS:CSeqG)(n)). Then (the v2-label of

(MCS:CSeqG)(n))(x) = card((G.adjacentSet({x})) ∩ dom (the vlabel of

(MCS:CSeqG)(n))).

Let G be a natural v-labeled v-graph. We say that G has property T if and

only if the condition (Def. 41) is satisfied.

(Def. 41) Let a, b, c be vertices of G. Suppose that a ∈ dom (the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom (the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom (the vlabel of G),

(ii) (the vlabel of G)(b) < (the vlabel of G)(d),

(iii) b and d are adjacent, and

(iv) a and d are not adjacent.

We now state three propositions:

(92) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) has property T .

(93) For every finite graph G holds (LexBFS:CSeq G).Result() has property

T .

(94) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property T and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.



recognizing chordal graphs: . . . 205

References

[1] Broderick Arneson and Piotr Rudnicki. Chordal graphs. Formalized Mathematics,
14(3):79–92, 2006.

[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-

matics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[6] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–676,

1990.
[7] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[9] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
[10] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New

York, 1980.
[14] Jaros law Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics,

1(3):471–475, 1990.
[15] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253–269, 2005.
[16] Gilbert Lee. Weighted and Labeled Graphs. Formalized Mathematics, 13(2):279–293,

2005.
[17] Gilbert Lee and Piotr Rudnicki. On ordering of bags. Formalized Mathematics, 10(1):39–

46, 2002.
[18] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics,

13(2):235–252, 2005.
[19] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Pre-

liminaries to circuits, I. Formalized Mathematics, 5(2):167–172, 1996.
[20] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,

4(1):83–86, 1993.
[21] Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics,

12(1):49–58, 2004.
[22] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-

matics, 6(3):335–338, 1997.
[23] Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number

of variables. Formalized Mathematics, 9(1):95–110, 2001.
[24] Christoph Schwarzweller. Term orders. Formalized Mathematics, 11(1):105–111, 2003.
[25] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
J. Comput., 13(3):566–579, 1984.

[26] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[27] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[28] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[29] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15–22, 1993.
[30] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341–

347, 2003.
[31] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.



206 broderick arneson and piotr rudnicki

[34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[35] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized
Mathematics, 1(1):85–89, 1990.

Received November 17, 2006


