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Chapter 4, pp. 81–84]. Then we follow with a formalization of another algorithm

serving the same end but based on maximum cardinality search as presented by

Tarjan and Yannakakis [25].
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1. Preliminaries

The following propositions are true:

(1) Let A, B be elements of N, X be a non empty set, and

F be a function from N into X. If F is one-to-one, then

{F (w);w ranges over elements of N: A ≤ w ∧ w ≤ A + B} = B + 1.

(2) For all natural numbers n, m, k such that m ≤ k and n < m holds

k −′ m < k −′ n.

1This work has been partially supported by the NSERC grant OGP 9207.

187
c© 2006 University of Bia lystok

ISSN 1426–2630



188 broderick arneson and piotr rudnicki

(3) For all natural numbers n, k such that n < k holds (k −′ (n + 1)) + 1 =

k −′ n.

(4) For all natural numbers n, m, k such that k 6= 0 holds (n + m · k)÷ k =

(n ÷ k) + m.

Let S be a set. We say that S has finite elements if and only if:

(Def. 1) Every element of S is finite.

Let us note that there exists a set which is non empty and has finite elements

and there exists a subset of 2N which is non empty and finite and has finite

elements.

Let S be a set with finite elements. One can check that every element of S

is finite.

Let f , g be functions. The functor f [∪]g yielding a function is defined by:

(Def. 2) dom(f [∪]g) = dom f ∪ dom g and for every set x such that x ∈ dom f ∪
dom g holds (f [∪]g)(x) = f(x) ∪ g(x).

The following three propositions are true:

(5) For all natural numbers m, n, k holds m ∈ Seg k\Seg(k−′n) iff k−′n < m

and m ≤ k.

(6) For all natural numbers n, k, m such that n ≤ m holds Seg k \ Seg(k −′

n) ⊆ Seg k \ Seg(k −′ m).

(7) For all natural numbers n, k such that n < k holds (Seg k \ Seg(k −′

n)) ∪ {k −′ n} = Seg k \ Seg(k −′ (n + 1)).

Let f be a binary relation. We say that f is natsubset yielding if and only

if:

(Def. 3) rng f ⊆ 2N.

Let us mention that there exists a function which is finite-yielding and nat-

subset yielding.

Let f be a finite-yielding natsubset yielding function and let x be a set.

Then f(x) is a finite subset of N.

One can prove the following proposition

(8) For every ordinal number X and for all finite subsets a, b of X such that

a 6= b holds (a, 1) -bag 6= (b, 1) -bag .

Let F be a natural-yielding function, let S be a set, and let k be a natural

number. The functor F .incSubset(S, k) yielding a natural-yielding function is

defined by the conditions (Def. 4).

(Def. 4)(i) dom(F .incSubset(S, k)) = domF, and

(ii) for every set y holds if y ∈ S and y ∈ dom F,

then (F .incSubset(S, k))(y) = F (y) + k and if y /∈ S, then

(F .incSubset(S, k))(y) = F (y).
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Let n be an ordinal number, let T be a connected term order of n, and let

B be a non empty finite subset of Bags n. The functor max(B,T ) yields a bag

of n and is defined as follows:

(Def. 5) max(B,T ) ∈ B and for every bag x of n such that x ∈ B holds x ≤T

max(B,T ).

Let O be an ordinal number. Observe that InvLexOrderO is connected.

2. Miscellany on Graphs

Let G be a graph. Note that there exists a vertex sequence of G which is

non empty and one-to-one.

Let G be a graph and let V be a non empty vertex sequence of G. A walk

of G is called a walk of V if:

(Def. 6) It.vertexSeq() = V.

Let G be a graph and let V be a non empty one-to-one vertex sequence of

G. One can check that every walk of V is path-like.

We now state two propositions:

(9) For every graph G and for all walks W1, W2 of G such that W1 is trivial

and W1.last() = W2.first() holds W1.append(W2) = W2.

(10) Let G, H be graphs, A, B, C be sets, G1 be a subgraph of G induced by

A, H1 be a subgraph of H induced by B, G2 be a subgraph of G1 induced

by C, and H2 be a subgraph of H1 induced by C. Suppose G =G H and

A ⊆ B and C ⊆ A and C is a non empty subset of the vertices of G. Then

G2 =G H2.

Let G be a v-graph. We say that G is natural v-labeled if and only if:

(Def. 7) The vlabel of G is natural-yielding.

3. Graphs with Two Vertex Labels

The natural number V2-LabelSelector is defined by:

(Def. 8) V2-LabelSelector = 8.

Let G be a graph structure. We say that G is v2-labeled if and only if:

(Def. 9) V2-LabelSelector ∈ dom G and there exists a function f such that

G(V2-LabelSelector) = f and dom f ⊆ the vertices of G.

Let us note that there exists a graph structure which is graph-like, weighted,

elabeled, vlabeled, and v2-labeled.

A v2-graph is a v2-labeled graph. A vv-graph is a vlabeled v2-labeled graph.

Let G be a v2-graph. The v2-label of G yields a function and is defined as

follows:
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(Def. 10) The v2-label of G = G(V2-LabelSelector).

Next we state the proposition

(11) For every v2-graph G holds dom(the v2-label of G) ⊆ the vertices of G.

Let G be a graph and let X be a set. Note that G.set(V2-LabelSelector,X)

is graph-like.

We now state the proposition

(12) For every graph G and for every set X holds

G.set(V2-LabelSelector,X) =G G.

Let G be a finite graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is finite.

Let G be a loopless graph and let X be a set.

Observe that G.set(V2-LabelSelector,X) is loopless.

Let G be a trivial graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is trivial.

Let G be a non trivial graph and let X be a set. One can check that

G.set(V2-LabelSelector,X) is non trivial.

Let G be a non-multi graph and let X be a set. One can check that

G.set(V2-LabelSelector,X) is non-multi.

Let G be a non-directed-multi graph and let X be a set. One can verify that

G.set(V2-LabelSelector,X) is non-directed-multi.

Let G be a connected graph and let X be a set.

Note that G.set(V2-LabelSelector,X) is connected.

Let G be an acyclic graph and let X be a set.

One can verify that G.set(V2-LabelSelector,X) is acyclic.

Let G be a v-graph and let X be a set.

One can check that G.set(V2-LabelSelector,X) is vlabeled.

Let G be a e-graph and let X be a set. Observe that G.set(V2-LabelSelector,X)

is elabeled.

Let G be a w-graph and let X be a set. Observe that G.set(V2-LabelSelector,X)

is weighted.

Let G be a v2-graph and let X be a set.

One can verify that G.set(VLabelSelector,X) is v2-labeled.

Let G be a graph, let Y be a set, and let X be a partial function from the

vertices of G to Y . Observe that G.set(V2-LabelSelector,X) is v2-labeled.

Let G be a graph and let X be a many sorted set indexed by the vertices of

G. Observe that G.set(V2-LabelSelector,X) is v2-labeled.

Let G be a graph. One can verify that G.set(V2-LabelSelector, ∅) is v2-

labeled.

Let G be a v2-graph. We say that G is natural v2-labeled if and only if:

(Def. 11) The v2-label of G is natural-yielding.

We say that G is finite v2-labeled if and only if:
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(Def. 12) The v2-label of G is finite-yielding.

We say that G is natsubset v2-labeled if and only if:

(Def. 13) The v2-label of G is natsubset yielding.

One can check that there exists a weighted elabeled vlabeled v2-labeled

graph which is finite, natural v-labeled, finite v2-labeled, natsubset v2-labeled,

and chordal and there exists a weighted elabeled vlabeled v2-labeled graph which

is finite, natural v-labeled, natural v2-labeled, and chordal.

Let G be a natural v-labeled v-graph. Observe that the vlabel of G is

natural-yielding.

Let G be a natural v2-labeled v2-graph. Observe that the v2-label of G is

natural-yielding.

Let G be a finite v2-labeled v2-graph. Observe that the v2-label of G is

finite-yielding.

Let G be a natsubset v2-labeled v2-graph. One can verify that the v2-label

of G is natsubset yielding.

Let G be a vv-graph and let v, x be sets. One can check that G.labelVertex(v, x)

is v2-labeled.

Next we state the proposition

(13) For every vv-graph G and for all sets v, x holds the v2-label of G = the

v2-label of G.labelVertex(v, x).

Let G be a natural v-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v-labeled.

Let G be a natural v2-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v2-labeled.

Let G be a finite v2-labeled vv-graph, let v be a set, and let x be a natural

number. Note that G.labelVertex(v, x) is finite v2-labeled.

Let G be a natsubset v2-labeled vv-graph, let v be a set, and let x be a

natural number. One can check that G.labelVertex(v, x) is natsubset v2-labeled.

Let G be a graph. Note that there exists a subgraph of G which is vlabeled

and v2-labeled.

Let G be a v2-graph and let G2 be a v2-labeled subgraph of G. We say that

G2 inherits v2-label if and only if:

(Def. 14) The v2-label of G2 = (the v2-label of G)↾(the vertices of G2).

Let G be a v2-graph. Note that there exists a v2-labeled subgraph of G

which inherits v2-label.

Let G be a v2-graph. A v2-subgraph of G is a v2-labeled subgraph of G

inheriting v2-label.

Let G be a vv-graph. Note that there exists a vlabeled v2-labeled subgraph

of G which inherits vlabel and v2-label.

Let G be a vv-graph. A vv-subgraph of G is a vlabeled v2-labeled subgraph

of G inheriting vlabel and v2-label.
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Let G be a natural v-labeled v-graph. Note that every v-subgraph of G is

natural v-labeled.

Let G be a graph and let V , E be sets. Observe that there exists a subgraph

of G induced by V and E which is weighted, elabeled, vlabeled, and v2-labeled.

Let G be a vv-graph and let V , E be sets. Observe that there exists a

vlabeled v2-labeled subgraph of G induced by V and E which inherits vlabel

and v2-label.

Let G be a vv-graph and let V , E be sets. A (V,E)-induced vv-subgraph of

G is a vlabeled v2-labeled subgraph of G induced by V and E inheriting vlabel

and v2-label.

Let G be a vv-graph and let V be a set. A V -induced vv-subgraph of G is

a (V,G.edgesBetween(V ))-induced vv-subgraph of G.

4. More on Graph Sequences

Let s be a many sorted set indexed by N. We say that s is iterative if and

only if:

(Def. 15) For all natural numbers k, n such that s(k) = s(n) holds s(k + 1) =

s(n + 1).

Let G3 be a many sorted set indexed by N. We say that G3 is eventually

constant if and only if:

(Def. 16) There exists a natural number n such that for every natural number m

such that n ≤ m holds G3(n) = G3(m).

Let us observe that there exists a many sorted set indexed by N which is

halting, iterative, and eventually constant.

The following proposition is true

(14) For every many sorted set G4 indexed by N such that G4 is halting and

iterative holds G4 is eventually constant.

One can check that every many sorted set indexed by N which is halting and

iterative is also eventually constant.

The following proposition is true

(15) For every many sorted set G4 indexed by N such that G4 is eventually

constant holds G4 is halting.

Let us mention that every many sorted set indexed by N which is eventually

constant is also halting.

One can prove the following two propositions:

(16) Let G4 be an iterative eventually constant many sorted set indexed

by N and n be a natural number. If G4.Lifespan() ≤ n, then

G4(G4.Lifespan()) = G4(n).
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(17) Let G4 be an iterative eventually constant many sorted set indexed by

N and n, m be natural numbers. If G4.Lifespan() ≤ n and n ≤ m, then

G4(m) = G4(n).

Let G3 be a v-graph sequence. We say that G3 is natural v-labeled if and

only if:

(Def. 17) For every natural number x holds G3(x) is natural v-labeled.

Let G3 be a graph sequence. We say that G3 is chordal if and only if:

(Def. 18) For every natural number x holds G3(x) is chordal.

We say that G3 has fixed vertices if and only if:

(Def. 19) For all natural numbers n, m holds the vertices of G3(n) = the vertices

of G3(m).

We say that G3 is v2-labeled if and only if:

(Def. 20) For every natural number x holds G3(x) is v2-labeled.

Let us observe that there exists a graph sequence which is weighted, elabeled,

vlabeled, and v2-labeled.

A v2-graph sequence is a v2-labeled graph sequence. A vv-graph sequence

is a vlabeled v2-labeled graph sequence.

Let G5 be a v2-graph sequence and let x be a natural number. Note that

G5(x) is v2-labeled.

Let G5 be a v2-graph sequence. We say that G5 is natural v2-labeled if and

only if:

(Def. 21) For every natural number x holds G5(x) is natural v2-labeled.

We say that G5 is finite v2-labeled if and only if:

(Def. 22) For every natural number x holds G5(x) is finite v2-labeled.

We say that G5 is natsubset v2-labeled if and only if:

(Def. 23) For every natural number x holds G5(x) is natsubset v2-labeled.

Let us mention that there exists a weighted elabeled vlabeled v2-labeled

graph sequence which is finite, natural v-labeled, finite v2-labeled, natsub-

set v2-labeled, and chordal and there exists a weighted elabeled vlabeled v2-

labeled graph sequence which is finite, natural v-labeled, natural v2-labeled,

and chordal.

Let G4 be a v-graph sequence and let x be a natural number. Then G4(x)

is a v-graph.

Let G5 be a natural v-labeled v-graph sequence and let x be a natural

number. Observe that G5(x) is natural v-labeled.

Let G5 be a natural v2-labeled v2-graph sequence and let x be a natural

number. One can check that G5(x) is natural v2-labeled.

Let G5 be a finite v2-labeled v2-graph sequence and let x be a natural

number. One can verify that G5(x) is finite v2-labeled.
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Let G5 be a natsubset v2-labeled v2-graph sequence and let x be a natural

number. Note that G5(x) is natsubset v2-labeled.

Let G5 be a chordal graph sequence and let x be a natural number. One

can check that G5(x) is chordal.

Let G4 be a v-graph sequence and let n be a natural number. Then G4(n)

is a v-graph.

Let G4 be a finite v-graph sequence and let n be a natural number. One can

check that G4(n) is finite.

Let G4 be a vv-graph sequence and let n be a natural number. Then G4(n)

is a vv-graph.

Let G4 be a finite vv-graph sequence and let n be a natural number. One

can verify that G4(n) is finite.

Let G4 be a chordal vv-graph sequence and let n be a natural number. Note

that G4(n) is chordal.

Let G4 be a natural v-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natural v-labeled.

Let G4 be a finite v2-labeled vv-graph sequence and let n be a natural

number. Note that G4(n) is finite v2-labeled.

Let G4 be a natsubset v2-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natsubset v2-labeled.

Let G4 be a natural v2-labeled vv-graph sequence and let n be a natural

number. Observe that G4(n) is natural v2-labeled.

5. Vertices Numbering Sequences

Let G3 be a v-graph sequence. We say that G3 has initially empty v-label if

and only if:

(Def. 24) The vlabel of G3(0) = ∅.

We say that G3 is adding one at a step if and only if the condition (Def. 25) is

satisfied.

(Def. 25) Let n be a natural number. Suppose n < G3.Lifespan(). Then there

exists a set w such that w /∈ dom (the vlabel of G3(n)) and the vlabel of

G3(n + 1) = (the vlabel of G3(n))+·(w 7−→. (G3.Lifespan() −′ n)).

Let G3 be a v-graph sequence. We say that G3 is v-label numbering if and

only if the condition (Def. 26) is satisfied.

(Def. 26) G3 is iterative, eventually constant, finite, natural v-labeled, and adding

one at a step and has fixed vertices and initially empty v-label.

One can check that there exists a v-graph sequence which is iterative, even-

tually constant, finite, natural v-labeled, and adding one at a step and has fixed

vertices and initially empty v-label.
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Let us observe that there exists a v-graph sequence which is v-label num-

bering.

One can check the following observations:

∗ every v-graph sequence which is v-label numbering is also iterative,

∗ every v-graph sequence which is v-label numbering is also eventually

constant,

∗ every v-graph sequence which is v-label numbering is also finite,

∗ every v-graph sequence which is v-label numbering has also fixed vertices,

∗ every v-graph sequence which is v-label numbering is also natural v-

labeled,

∗ every v-graph sequence which is v-label numbering has also initially

empty v-label, and

∗ every v-graph sequence which is v-label numbering is also adding one at

a step.

A v-label numbering sequence is a v-label numbering v-graph sequence.

Let G3 be a v-label numbering sequence and let n be a natural number. The

functor G3 .PickedAt n yields a set and is defined by:

(Def. 27)(i) G3 .PickedAt n = choose(the vertices of G3(0)) if n ≥ G3.Lifespan(),

(ii) G3 .PickedAt n /∈ dom (the vlabel of G3(n)) and the vlabel of G3(n +

1) = (the vlabel of G3(n))+·((G3 .PickedAt n)7−→. (G3.Lifespan() −′ n)),

otherwise.

The following propositions are true:

(18) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then G3 .PickedAt n ∈ G3(n + 1).labeledV() and

G3(n + 1).labeledV() = G3(n).labeledV() ∪ {G3 .PickedAt n}.

(19) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then (the vlabel of G3(n + 1))(G3 .PickedAt n) =

G3.Lifespan() −′ n.

(20) For every v-label numbering sequence G3 and for every natural number

n such that n ≤ G3.Lifespan() holds card(G3(n).labeledV()) = n.

(21) For every v-label numbering sequence G3 and for every natural number n

holds rng (the vlabel of G3(n)) = Seg(G3.Lifespan())\Seg(G3.Lifespan()−′

n).

(22) Let G3 be a v-label numbering sequence, n be a natural number, and

x be a set. Then (the vlabel of G3(n))(x) ≤ G3.Lifespan() and if x ∈
G3(n).labeledV(), then 1 ≤ (the vlabel of G3(n))(x).

(23) Let G3 be a v-label numbering sequence and n, m be natural numbers.

Suppose G3.Lifespan() −′ n < m and m ≤ G3.Lifespan(). Then there

exists a vertex v of G3(n) such that v ∈ G3(n).labeledV() and (the vlabel
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of G3(n))(v) = m.

(24) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If m ≤ n, then the vlabel of G3(m) ⊆ the vlabel of G3(n).

(25) For every v-label numbering sequence G3 and for every natural number

n holds the vlabel of G3(n) is one-to-one.

(26) Let G3 be a v-label numbering sequence, m, n be natural numbers, and

v be a set. Suppose v ∈ G3(m).labeledV() and v ∈ G3(n).labeledV().

Then (the vlabel of G3(m))(v) = (the vlabel of G3(n))(v).

(27) Let G3 be a v-label numbering sequence, v be a set, and m, n be natural

numbers. If v ∈ G3(m).labeledV() and (the vlabel of G3(m))(v) = n, then

G3 .PickedAt(G3.Lifespan() −′ n) = v.

(28) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If n < G3.Lifespan() and n < m, then G3 .PickedAt n ∈ G3(m).labeledV()

and (the vlabel of G3(m))(G3 .PickedAt n) = G3.Lifespan() −′ n.

(29) Let G3 be a v-label numbering sequence, m be a natural number, and v

be a set. Suppose v ∈ G3(m).labeledV(). Then G3.Lifespan()−′(the vlabel

of G3(m))(v) < m and G3.Lifespan() −′ m < (the vlabel of G3(m))(v).

(30) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then b ∈

G3(G3.Lifespan() −′ (the vlabel of G3(i))(a)).labeledV().

(31) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then a /∈
G3(G3.Lifespan() −′ (the vlabel of G3(i))(b)).labeledV().

6. Lexicographical Breadth-First Search

Let G be a graph. The functor LexBFS:Init G yields a natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 28) LexBFS:Init G = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the

vertices of G) 7−→ ∅).

Let G be a finite graph. Then LexBFS:InitG is a finite natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph.

Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Let

us assume that dom (the v2-label of G) = the vertices of G. The functor

LexBFS:PickUnnumbered G yields a vertex of G and is defined by:

(Def. 29)(i) LexBFS:PickUnnumbered G = choose(the vertices of G) if dom(the

vlabel of G) = the vertices of G,
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(ii) there exists a non empty finite subset S of 2N and there exists a non

empty finite subset B of Bags N and there exists a function F such that S =

rng F and F = (the v2-label of G)↾((the vertices of G)\dom (the vlabel of

G)) and for every finite subset x of N such that x ∈ S holds (x, 1) -bag ∈ B

and for every set x such that x ∈ B there exists a finite subset y of N

such that y ∈ S and x = (y, 1) -bag and LexBFS:PickUnnumberedG =

choose(F−1({supportmax(B, InvLexOrderN)})), otherwise.

Let G be a vv-graph, let v be a set, and let k be a natural number. The

functor LexBFS:LabelAdjacent(G, v, k) yielding a vv-graph is defined as follows:

(Def. 30) LexBFS:LabelAdjacent(G, v, k) = G.set(V2-LabelSelector, (the v2-label

of G)[∪]((G.adjacentSet({v})) \ dom(the vlabel of G) 7−→ {k})).

Next we state four propositions:

(32) Let G be a vv-graph, v, x be sets, and k be a natural number. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(33) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(34) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ G.adjacentSet({v}) and x /∈ dom (the vlabel of G). Then (the v2-label

of LexBFS:LabelAdjacent(G, v, k))(x) = (the v2-label of G)(x) ∪ {k}.

(35) Let G be a vv-graph, v be a set, and k be a natural number. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

LexBFS:LabelAdjacent(G, v, k)) = the vertices of G.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let k be a natural number. Then

LexBFS:LabelAdjacent(G, v, k) is a finite natural v-labeled finite v2-labeled nat-

subset v2-labeled vv-graph.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let n be a natural number. The func-

tor LexBFS:Update(G, v, n) yielding a finite natural v-labeled finite v2-labeled

natsubset v2-labeled vv-graph is defined by:

(Def. 31) LexBFS:Update(G, v, n) =

LexBFS:LabelAdjacent(G.labelVertex(v,G.order()−′n), v,G.order()−′n).

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph. The functor LexBFS:Step G yields a finite natural v-labeled finite

v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 32) LexBFS:Step G =







G, if G.order() ≤ card dom (the vlabel of G),

LexBFS:Update(G,LexBFS:PickUnnumbered G,

card dom (the vlabel of G)), otherwise.
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Let G be a finite graph. The functor LexBFS:CSeqG yields a finite natural

v-labeled finite v2-labeled natsubset v2-labeled vv-graph sequence and is defined

by:

(Def. 33) (LexBFS:CSeq G)(0) = LexBFS:Init G and for every natural number n

holds (LexBFS:CSeq G)(n + 1) = LexBFS:Step(LexBFS:CSeq G)(n).

We now state the proposition

(36) For every finite graph G holds LexBFS:CSeq G is iterative.

Let G be a finite graph. Observe that LexBFS:CSeqG is iterative.

Next we state a number of propositions:

(37) For every graph G holds the vlabel of LexBFS:Init G = ∅.

(38) Let G be a graph and v be a set. Then dom (the v2-

label of LexBFS:Init G) = the vertices of G and (the v2-label of

LexBFS:Init G)(v) = ∅.

(39) For every graph G holds G =G LexBFS:Init G.

(40) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph and x

be a set. Suppose that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then ((the v2-label of G)(x), 1) -bag ≤InvLexOrder N ((the v2-label of

G)(LexBFS:PickUnnumbered G), 1) -bag .

(41) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Sup-

pose dom (the v2-label of G) = the vertices of G and dom (the vlabel of

G) 6= the vertices of G. Then LexBFS:PickUnnumbered G /∈ dom(the

vlabel of G).

(42) For every finite graph G and for every natural number n holds

(LexBFS:CSeq G)(n) =G G.

(43) For every finite graph G and for all natural numbers m, n holds

(LexBFS:CSeq G)(m) =G (LexBFS:CSeqG)(n).

(44) Let G be a finite graph and n be a natural number. Sup-

pose card dom (the vlabel of (LexBFS:CSeqG)(n)) < G.order().

Then the vlabel of (LexBFS:CSeq G)(n + 1) = (the vlabel of

(LexBFS:CSeq G)(n))+·(LexBFS:PickUnnumbered(LexBFS:CSeqG)(n)

7−→. (G.order() −′ card dom (the vlabel of (LexBFS:CSeq G)(n)))).

(45) For every finite graph G and for every natural number n holds dom(the

v2-label of (LexBFS:CSeq G)(n)) = the vertices of (LexBFS:CSeqG)(n).

(46) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (LexBFS:CSeq G)(n)) = n.

(47) For every finite graph G and for every natural number n

such that G.order() ≤ n holds (LexBFS:CSeq G)(G.order()) =
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(LexBFS:CSeq G)(n).

(48) For every finite graph G and for all natural numbers m, n such

that G.order() ≤ m and m ≤ n holds (LexBFS:CSeq G)(m) =

(LexBFS:CSeq G)(n).

(49) For every finite graph G holds LexBFS:CSeq G is eventually constant.

Let G be a finite graph. Note that LexBFS:CSeq G is eventually constant.

We now state two propositions:

(50) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (LexBFS:CSeq G)(n)) = the vertices of (LexBFS:CSeqG)(n) if

and only if G.order() ≤ n.

(51) For every finite graph G holds (LexBFS:CSeq G).Lifespan() = G.order().

Let G be a finite chordal graph and let i be a natural number. One can

check that (LexBFS:CSeqG)(i) is chordal.

Let G be a finite chordal graph. One can check that LexBFS:CSeq G is

chordal.

One can prove the following proposition

(52) For every finite graph G holds LexBFS:CSeq G is v-label numbering.

Let G be a finite graph. Note that LexBFS:CSeq G is v-label numbering.

We now state several propositions:

(53) For every finite graph G and for every natural number n

such that n < G.order() holds LexBFS:CSeqG .PickedAt n =

LexBFS:PickUnnumbered(LexBFS:CSeq G)(n).

(54) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (LexBFS:CSeq G)(n) such that

(i) w = LexBFS:PickUnnumbered(LexBFS:CSeq G)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom (the vla-

bel of (LexBFS:CSeq G)(n)), then (the v2-label of (LexBFS:CSeq G)(n +

1))(v) = (the v2-label of (LexBFS:CSeqG)(n))(v)∪{G.order()−′n} and if

v /∈ G.adjacentSet({w}) or v ∈ dom (the vlabel of (LexBFS:CSeq G)(n)),

then (the v2-label of (LexBFS:CSeq G)(n + 1))(v) = (the v2-label of

(LexBFS:CSeq G)(n))(v).

(55) Let G be a finite graph, i be a natural number, and v be a set. Then (the

v2-label of (LexBFS:CSeq G)(i))(v) ⊆ Seg(G.order())\Seg(G.order()−′ i).

(56) Let G be a finite graph, x be a set, and i, j be natural numbers. If

i ≤ j, then (the v2-label of (LexBFS:CSeq G)(i))(x) ⊆ (the v2-label of

(LexBFS:CSeq G)(j))(x).

(57) Let G be a finite graph, m, n be natural numbers, and x,

y be sets. Suppose n < G.order() and n < m and y =

LexBFS:PickUnnumbered(LexBFS:CSeq G)(n) and x /∈ dom(the vlabel of



200 broderick arneson and piotr rudnicki

(LexBFS:CSeq G)(n)) and x ∈ G.adjacentSet({y}). Then G.order()−′ n ∈
(the v2-label of (LexBFS:CSeq G)(m))(x).

(58) Let G be a finite graph and m, n be natural numbers. Suppose

m < n. Let x be a set. Suppose G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeq G)(m + 1))(x). Then G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeq G)(n))(x).

(59) Let G be a finite graph and m, n, k be natural numbers. Suppose

k < n and n ≤ m. Let x be a set. Suppose G.order() −′ k /∈ (the v2-

label of (LexBFS:CSeq G)(n))(x). Then G.order() −′ k /∈ (the v2-label of

(LexBFS:CSeq G)(m))(x).

(60) Let G be a finite graph, m, n be natural numbers, and x

be a vertex of (LexBFS:CSeq G)(m). Suppose n ∈ (the v2-

label of (LexBFS:CSeqG)(m))(x). Then there exists a vertex y of

(LexBFS:CSeq G)(m) such that LexBFS:PickUnnumbered(LexBFS:CSeq G)

(G.order()−′n) = y and y /∈ dom (the vlabel of (LexBFS:CSeq G)(G.order()−′

n)) and x ∈ G.adjacentSet({y}).

Let G4 be a finite natural v-labeled vv-graph sequence. Then G4.Result() is

a finite natural v-labeled vv-graph.

The following four propositions are true:

(61) For every finite graph G holds (LexBFS:CSeq G).Result().labeledV() =

the vertices of G.

(62) For every finite graph G holds (the vlabel of (LexBFS:CSeqG).Result())−1

is a vertex scheme of G.

(63) Let G be a finite graph, i, j be natural numbers, and a, b be vertices of

(LexBFS:CSeq G)(i). Suppose that

(i) a ∈ dom(the vlabel of (LexBFS:CSeqG)(i)),

(ii) b ∈ dom (the vlabel of (LexBFS:CSeq G)(i)),

(iii) (the vlabel of (LexBFS:CSeq G)(i))(a) < (the vlabel of

(LexBFS:CSeq G)(i))(b), and

(iv) j = G.order() −′ (the vlabel of (LexBFS:CSeqG)(i))(b).

Then ((the v2-label of (LexBFS:CSeq G)(j))(a), 1) -bag ≤InvLexOrder N

((the v2-label of (LexBFS:CSeq G)(j))(b), 1) -bag .

(64) Let G be a finite graph, i, j be natural numbers, and

v be a vertex of (LexBFS:CSeqG)(i). Suppose j ∈ (the

v2-label of (LexBFS:CSeqG)(i))(v). Then there exists a vertex

w of (LexBFS:CSeq G)(i) such that w ∈ dom (the vlabel of

(LexBFS:CSeq G)(i)) and (the vlabel of (LexBFS:CSeqG)(i))(w) = j and

v ∈ G.adjacentSet({w}).

Let G be a natural v-labeled v-graph. We say that G has property L3 if

and only if the condition (Def. 34) is satisfied.
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(Def. 34) Let a, b, c be vertices of G. Suppose that a ∈ dom(the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom(the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom(the vlabel of G),

(ii) (the vlabel of G)(c) < (the vlabel of G)(d),

(iii) b and d are adjacent,

(iv) a and d are not adjacent, and

(v) for every vertex e of G such that e 6= d and e and b are adjacent and e

and a are not adjacent holds (the vlabel of G)(e) < (the vlabel of G)(d).

One can prove the following three propositions:

(65) For every finite graph G and for every natural number n holds

(LexBFS:CSeq G)(n) has property L3 .

(66) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property L3 and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.

(67) For every finite chordal vv-graph G holds

(the vlabel of (LexBFS:CSeq G).Result())−1 is a perfect vertex scheme of

G.

7. The Maximum Cardinality Search Algorithm

Let G be a finite graph. The functor MCS:InitG yields a finite natural

v-labeled natural v2-labeled vv-graph and is defined by:

(Def. 35) MCS:InitG = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the ver-

tices of G) 7−→ 0).

Let G be a finite natural v2-labeled vv-graph. Let us assume that dom (the

v2-label of G) = the vertices of G. The functor MCS:PickUnnumberedG yields

a vertex of G and is defined by:

(Def. 36)(i) MCS:PickUnnumberedG = choose(the vertices of G) if dom(the vla-

bel of G) = the vertices of G,

(ii) there exists a finite non empty natural-membered set S and there exists

a function F such that S = rng F and F = (the v2-label of G)↾((the

vertices of G) \ dom (the vlabel of G)) and MCS:PickUnnumberedG =

choose(F−1({max S})), otherwise.

Let G be a finite natural v2-labeled vv-graph and let v be a set. The func-

tor MCS:LabelAdjacent(G, v) yields a finite natural v2-labeled vv-graph and is

defined by:
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(Def. 37) MCS:LabelAdjacent(G, v) = G.set(V2-LabelSelector, (the v2-label of

G) .incSubset((G.adjacentSet({v})) \ dom (the vlabel of G), 1)).

Let G be a finite natural v-labeled natural v2-labeled vv-graph and let v

be a vertex of G. Then MCS:LabelAdjacent(G, v) is a finite natural v-labeled

natural v2-labeled vv-graph.

Let G be a finite natural v-labeled natural v2-labeled vv-graph, let v be a

vertex of G, and let n be a natural number. The functor MCS:Update(G, v, n)

yielding a finite natural v-labeled natural v2-labeled vv-graph is defined as fol-

lows:

(Def. 38) MCS:Update(G, v, n) = MCS:LabelAdjacent(G.labelVertex(v,G.order()− ′

n), v).

Let G be a finite natural v-labeled natural v2-labeled vv-graph. The functor

MCS:Step G yielding a finite natural v-labeled natural v2-labeled vv-graph is

defined by:

(Def. 39) MCS:Step G =







G, if G.order() ≤ card dom (the vlabel of G),

MCS:Update(G,MCS:PickUnnumbered G, card dom

(the vlabel of G)), otherwise.

Let G be a finite graph. The functor MCS:CSeqG yields a finite natural

v-labeled natural v2-labeled vv-graph sequence and is defined by:

(Def. 40) (MCS:CSeqG)(0) = MCS:InitG and for every natural number n holds

(MCS:CSeqG)(n + 1) = MCS:Step(MCS:CSeqG)(n).

The following proposition is true

(68) For every finite graph G holds MCS:CSeqG is iterative.

Let G be a finite graph. Observe that MCS:CSeqG is iterative.

We now state a number of propositions:

(69) For every finite graph G holds the vlabel of MCS:InitG = ∅.

(70) Let G be a finite graph and v be a set. Then dom (the v2-label of

MCS:InitG) = the vertices of G and (the v2-label of MCS:InitG)(v) = 0.

(71) For every finite graph G holds G =G MCS:InitG.

(72) Let G be a finite natural v2-labeled vv-graph and x be a set. Suppose

that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then (the v2-label of G)(x) ≤ (the v2-label of G)(MCS:PickUnnumbered G).

(73) Let G be a finite natural v2-labeled vv-graph. Suppose dom (the v2-label

of G) = the vertices of G and dom (the vlabel of G) 6= the vertices of G.

Then MCS:PickUnnumbered G /∈ dom (the vlabel of G).

(74) Let G be a finite natural v2-labeled vv-graph and v, x be sets. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of
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MCS:LabelAdjacent(G, v))(x).

(75) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

MCS:LabelAdjacent(G, v))(x).

(76) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the v2-label of G) and x ∈ G.adjacentSet({v}) and x /∈ dom (the

vlabel of G). Then (the v2-label of MCS:LabelAdjacent(G, v))(x) = (the

v2-label of G)(x) + 1.

(77) Let G be a finite natural v2-labeled vv-graph and v be a set. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

MCS:LabelAdjacent(G, v)) = the vertices of G.

(78) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) =G G.

(79) For every finite graph G and for all natural numbers m, n holds

(MCS:CSeqG)(m) =G (MCS:CSeqG)(n).

Let G be a finite chordal graph and let n be a natural number. Observe that

(MCS:CSeqG)(n) is chordal.

Let G be a finite chordal graph. Observe that MCS:CSeqG is chordal.

One can prove the following propositions:

(80) For every finite graph G and for every natural number n holds dom (the

v2-label of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n).

(81) Let G be a finite graph and n be a natural number. Suppose

card dom (the vlabel of (MCS:CSeqG)(n)) < G.order(). Then the vlabel

of (MCS:CSeqG)(n + 1) = (the vlabel of (MCS:CSeqG)(n))

+·(MCS:PickUnnumbered(MCS:CSeqG)(n)7−→. (G.order()−′card dom (the

vlabel of (MCS:CSeqG)(n)))).

(82) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (MCS:CSeqG)(n)) = n.

(83) For every finite graph G and for every natural number n such that

G.order() ≤ n holds (MCS:CSeqG)(G.order()) = (MCS:CSeqG)(n).

(84) For every finite graph G and for all natural numbers m, n such that

G.order() ≤ m and m ≤ n holds (MCS:CSeqG)(m) = (MCS:CSeqG)(n).

(85) For every finite graph G holds MCS:CSeqG is eventually constant.

Let G be a finite graph. Observe that MCS:CSeqG is eventually constant.

The following propositions are true:

(86) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n) if and

only if G.order() ≤ n.

(87) For every finite graph G holds (MCS:CSeqG).Lifespan() = G.order().
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(88) For every finite graph G holds MCS:CSeqG is v-label numbering.

Let G be a finite graph. Note that MCS:CSeqG is v-label numbering.

Next we state three propositions:

(89) For every finite graph G and for every natural number n such that n <

G.order() holds MCS:CSeqG .PickedAt n =

MCS:PickUnnumbered(MCS:CSeqG)(n).

(90) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (MCS:CSeqG)(n) such that

(i) w = MCS:PickUnnumbered(MCS:CSeqG)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom(the vlabel

of (MCS:CSeqG)(n)), then (the v2-label of (MCS:CSeqG)(n + 1))(v) =

(the v2-label of (MCS:CSeqG)(n))(v) + 1 and if v /∈ G.adjacentSet({w})
or v ∈ dom (the vlabel of (MCS:CSeqG)(n)), then (the v2-label of

(MCS:CSeqG)(n + 1))(v) = (the v2-label of (MCS:CSeqG)(n))(v).

(91) Let G be a finite graph, n be a natural number, and x be a set. Sup-

pose x /∈ dom (the vlabel of (MCS:CSeqG)(n)). Then (the v2-label of

(MCS:CSeqG)(n))(x) = card((G.adjacentSet({x})) ∩ dom (the vlabel of

(MCS:CSeqG)(n))).

Let G be a natural v-labeled v-graph. We say that G has property T if and

only if the condition (Def. 41) is satisfied.

(Def. 41) Let a, b, c be vertices of G. Suppose that a ∈ dom (the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom (the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom (the vlabel of G),

(ii) (the vlabel of G)(b) < (the vlabel of G)(d),

(iii) b and d are adjacent, and

(iv) a and d are not adjacent.

We now state three propositions:

(92) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) has property T .

(93) For every finite graph G holds (LexBFS:CSeq G).Result() has property

T .

(94) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property T and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.
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