The Catalan Numbers. Part II^1

Karol Pąk Institute of Mathematics University of Białystok Akademicka 2, 15-267 Białystok, Poland

Summary. In this paper, we define sequence dominated by 0, in which every initial fragment contains more zeroes than ones. If $n \ge 2 \cdot m$ and n > 0, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula

$$D(n,m) = \frac{n+1-2 \cdot m}{n+1-m} \cdot \binom{n}{m}$$

and satisfies the recurrence relation

$$D(n,m) = D(n-1,m) + \sum_{i=0}^{m-1} D(2 \cdot i, i) \cdot D(n-2 \cdot (i+1), m-(i+1)).$$

Obviously, if $n = 2 \cdot m$, then we obtain the recurrence relation for the Catalan numbers (starting from 0)

$$C_{m+1} = \sum_{i=0}^{m-1} C_{i+1} \cdot C_{m-i}.$$

Using the above recurrence relation we can see that

$$\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i} = 1 + \left(\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i}\right)^{2}$$

where $(|x| < \frac{1}{4})$ and hence

$$\sum_{i=0}^{\infty} C_{i+1} \cdot x^{i} = \frac{1 - \sqrt{1 - 4 \cdot x}}{2 \cdot x}.$$

MML identifier: CATALAN2, version: 7.8.03 4.75.958

¹This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6 IST grant TYPES No. 510996.

C 2006 University of Białystok ISSN 1426-2630 The notation and terminology used here are introduced in the following papers: [2], [23], [7], [25], [19], [27], [5], [28], [9], [1], [26], [21], [6], [3], [14], [12], [16], [13], [20], [15], [8], [22], [11], [10], [18], [24], [17], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, D denote sets, i, j, k, l, m, n denote elements of \mathbb{N}, p, q denote finite 0-sequences of \mathbb{N}, p', q' denote finite 0-sequences, and p_1, q_1 denote finite 0-sequences of D.

Next we state several propositions:

- (1) $(p' \cap q') \upharpoonright \operatorname{dom} p' = p'.$
- (2) If $n \leq \operatorname{dom} p'$, then $(p' \cap q') \upharpoonright n = p' \upharpoonright n$.
- (3) If $n = \operatorname{dom} p' + k$, then $(p' \cap q') \upharpoonright n = p' \cap (q' \upharpoonright k)$.
- (4) There exists q' such that $p' = (p' \upharpoonright n) \cap q'$.
- (5) There exists q_1 such that $p_1 = (p_1 \restriction n) \cap q_1$.

Let us consider p. We say that p is dominated by 0 if and only if:

(Def. 1) rng $p \subseteq \{0, 1\}$ and for every k such that $k \leq \text{dom } p \text{ holds } 2 \cdot \sum (p \restriction k) \leq k$. The following propositions are true:

- (6) If p is dominated by 0, then $2 \cdot \sum (p \restriction k) \le k$.
- (7) If p is dominated by 0, then p(0) = 0.
- Let us consider k, m. Then $k \mapsto m$ is a finite 0-sequence of \mathbb{N} .

One can check that there exists a finite 0-sequence of \mathbb{N} which is empty and dominated by 0 and there exists a finite 0-sequence of \mathbb{N} which is non empty and dominated by 0.

The following propositions are true:

- (8) $n \mapsto 0$ is dominated by 0.
- (9) If $n \ge m$, then $(n \longmapsto 0) \cap (m \longmapsto 1)$ is dominated by 0.
- (10) If p is dominated by 0, then $p \upharpoonright n$ is dominated by 0.
- (11) If p is dominated by 0 and q is dominated by 0, then $p \cap q$ is dominated by 0.
- (12) If p is dominated by 0, then $2 \cdot \sum (p \upharpoonright (2 \cdot n + 1)) < 2 \cdot n + 1$.
- (13) If p is dominated by 0 and $n \leq \ln p 2 \cdot \sum p$, then $p \cap (n \longmapsto 1)$ is dominated by 0.
- (14) If p is dominated by 0 and $n \leq (k + \ln p) 2 \cdot \sum p$, then $(k \mapsto 0) \cap p \cap (n \mapsto 1)$ is dominated by 0.
- (15) If p is dominated by 0 and $2 \cdot \sum (p \restriction k) = k$, then $k \leq \text{len } p$ and $\text{len}(p \restriction k) = k$.
- (16) If p is dominated by 0 and $2 \cdot \sum (p \restriction k) = k$ and $p = (p \restriction k) \cap q$, then q is dominated by 0.

- (17) If p is dominated by 0 and $2 \cdot \sum (p \restriction k) = k$ and k = n + 1, then $p \restriction k = (p \restriction n) \cap (1 \longmapsto 1)$.
- (18) Let given m, p. Suppose $m = \min^* \{n : 2 \cdot \sum (p \upharpoonright n) = n \land n > 0\}$ and m > 0 and p is dominated by 0. Then there exists q such that $p \upharpoonright m = (1 \longmapsto 0) \cap q \cap (1 \longmapsto 1)$ and q is dominated by 0.
- (19) Let given p. Suppose rng $p \subseteq \{0, 1\}$ and p is not dominated by 0. Then there exists k such that $2 \cdot k + 1 = \min^* \{n : 2 \cdot \sum(p \upharpoonright n) > n\}$ and $2 \cdot k + 1 \leq \dim p$ and $k = \sum(p \upharpoonright (2 \cdot k))$ and $p(2 \cdot k) = 1$.
- (20) Let given p, q, k. Suppose $p \upharpoonright (2 \cdot k + \operatorname{len} q) = (k \longmapsto 0) \cap q \cap (k \longmapsto 1)$ and q is dominated by 0 and $2 \cdot \sum q = \operatorname{len} q$ and k > 0. Then $\min^* \{n : 2 \cdot \sum (p \upharpoonright n) = n \land n > 0\} = 2 \cdot k + \operatorname{len} q$.
- (21) Let given p. Suppose p is dominated by 0 and $\{i : 2 \cdot \sum (p | i) = i \land i > 0\} = \emptyset$ and len p > 0. Then there exists q such that $p = \langle 0 \rangle \cap q$ and q is dominated by 0.
- (22) If p is dominated by 0, then $\langle 0 \rangle \cap p$ is dominated by 0 and $\{i : 2 \cdot \sum ((\langle 0 \rangle \cap p) | i) = i \land i > 0\} = \emptyset$.
- (23) If rng $p \subseteq \{0,1\}$ and p is not dominated by 0 and $2 \cdot k + 1 = \min^* \{n : 2 \cdot \sum (p \upharpoonright n) > n\}$, then $p \upharpoonright (2 \cdot k)$ is dominated by 0.

2. The Recurrence Relation for the Catalan Numbers

Let n, m be natural numbers. The functor $\text{Domin}_0(n, m)$ yields a subset of $\{0, 1\}^{\omega}$ and is defined as follows:

(Def. 2) $x \in \text{Domin}_0(n, m)$ iff there exists a finite 0-sequence p of \mathbb{N} such that p = x and p is dominated by 0 and dom p = n and $\sum p = m$.

Next we state two propositions:

- (24) $p \in \text{Domin}_0(n, m)$ iff p is dominated by 0 and dom p = n and $\sum p = m$.
- (25) $\text{Domin}_0(n,m) \subseteq \text{Choose}(n,m,1,0).$

Let us consider n, m. One can check that $\text{Domin}_0(n, m)$ is finite. One can prove the following propositions:

- (26) Domin₀(n,m) is empty iff $2 \cdot m > n$.
- (27) $\operatorname{Domin}_0(n,0) = \{n \longmapsto 0\}.$
- (28) card $Domin_0(n, 0) = 1$.
- (29) Let given p, n. Suppose $\operatorname{rng} p \subseteq \{0, n\}$. Then there exists q such that $\operatorname{len} p = \operatorname{len} q$ and $\operatorname{rng} q \subseteq \{0, n\}$ and for every k such that $k \leq \operatorname{len} p$ holds $\sum (p \upharpoonright k) + \sum (q \upharpoonright k) = n \cdot k$ and for every k such that $k \in \operatorname{len} p$ holds q(k) = n p(k).
- (30) If $m \le n$, then $\binom{n}{m} > 0$.

KAROL PĄK

- (31) If $2 \cdot (m+1) \leq n$, then card(Choose $(n, m+1, 1, 0) \setminus \text{Domin}_0(n, m+1)$) = card Choose(n, m, 1, 0).
- (32) If $2 \cdot (m+1) \leq n$, then card $\operatorname{Domin}_0(n, m+1) = \binom{n}{m+1} \binom{n}{m}$.
- (33) If $2 \cdot m \leq n$, then card $\operatorname{Domin}_0(n,m) = \frac{(n+1)-2 \cdot m}{(n+1)-m} \cdot \binom{n}{m}$.
- (34) card $\text{Domin}_0(2+k,1) = k+1$.
- (35) card Domin₀(4 + k, 2) = $\frac{(k+1)\cdot(k+4)}{2}$.
- (36) card Domin₀(6 + k, 3) = $\frac{(k+1)\cdot(k+5)\cdot(k+6)}{6}$.
- (37) card Domin₀ $(2 \cdot n, n) = \frac{\binom{2 \cdot n}{n}}{n+1}$.
- (38) card $\text{Domin}_0(2 \cdot n, n) = \text{Catalan}(n+1).$

Let us consider D. A functional non empty set is said to be a set of ω -sequences of D if:

(Def. 3) For every x such that $x \in it$ holds x is a finite 0-sequence of D.

Let us consider D. Then D^{ω} is a set of ω -sequences of D. Let F be a set of ω -sequences of D. We see that the element of F is a finite 0-sequence of D.

In the sequel p_2 denotes an element of \mathbb{N}^{ω} .

We now state several propositions:

- (39) $\overline{\{p_2: \text{dom}\, p_2 = 2 \cdot n \land p_2 \text{ is dominated by } 0\}} = {2 \cdot n \choose n}.$
- (40) Let given n, m, k, j, l. Suppose $j = n 2 \cdot (k+1)$ and l = m (k+1). $\frac{\text{Then } \{p_2 : p_2 \in \text{Domin}_0(n,m) \land 2 \cdot (k+1) = \min^*\{i : 2 \cdot \sum (p_2 \restriction i) = 1\}}{\overline{i \land i > 0}\}} = \text{card Domin}_0(2 \cdot k, k) \cdot \text{card Domin}_0(j, l).$
- (41) Let given n, m. Suppose $2 \cdot m \leq n$. Then there exists a finite 0-sequence $\frac{C_1 \text{ of } \mathbb{N} \text{ such that}}{\{p_2 : p_2 \in \text{Domin}_0(n,m) \land \{i : 2 \cdot \sum (p_2 \upharpoonright i) = i \land i > 0\} \neq \emptyset\}} = \sum C_1$

and dom $C_1 = m$ and for every j such that j < m holds $C_1(j) = card \operatorname{Domin}_0(2 \cdot j, j) \cdot card \operatorname{Domin}_0(n - 2 \cdot (j + 1), m - (j + 1)).$

- (42) For every n such that n > 0 holds $\text{Domin}_0(2 \cdot n, n) = \{p_2 : p_2 \in \text{Domin}_0(2 \cdot n, n) \land \{i : 2 \cdot \sum (p_2 \restriction i) = i \land i > 0\} \neq \emptyset\}.$
- (43) Let given n. Suppose n > 0. Then there exists a finite 0-sequence C_2 of \mathbb{N} such that $\sum C_2 = \text{Catalan}(n+1)$ and dom $C_2 = n$ and for every j such that j < n holds $C_2(j) = \text{Catalan}(j+1) \cdot \text{Catalan}(n-j)$.
- (44) $\overline{\{p_2: p_2 \in \text{Domin}_0(n+1,m) \land \{i: 2 \cdot \sum (p_2 \upharpoonright i) = i \land i > 0\}} = \emptyset\} = \text{card } \text{Domin}_0(n,m).$
- (45) Let given n, m. Suppose $2 \cdot m \leq n$. Then there exists a finite 0-sequence C_1 of \mathbb{N} such that card $\operatorname{Domin}_0(n,m) = \sum C_1 + \operatorname{card} \operatorname{Domin}_0(n-'1,m)$ and dom $C_1 = m$ and for every j such that j < m holds $C_1(j) = \operatorname{card} \operatorname{Domin}_0(2 \cdot j, j) \cdot \operatorname{card} \operatorname{Domin}_0(n-'2 \cdot (j+1), m-'(j+1)).$
- (46) For all n, k there exists p such that $\sum p = \text{card Domin}_0(2 \cdot n + 2 + k, n + 1)$ and dom p = k + 1 and for every i such that $i \leq k$ holds p(i) =

156

card $\text{Domin}_0(2 \cdot n + 1 + i, n)$.

3. Cauchy Product

We use the following convention: s_1, s_2, s_3 denote sequences of real numbers, r denotes a real number, and F_1, F_2, F_3 denote finite 0-sequences of \mathbb{R} .

Let us consider F_1 . The functor $\sum F_1$ yields a real number and is defined as follows:

(Def. 4) $\sum F_1 = +_{\mathbb{R}} \odot F_1$.

Let us consider F_1 , x. Then $F_1(x)$ is a real number.

Let s_1 , s_2 be sequences of real numbers. The functor $s_1(\#) s_2$ yields a sequence of real numbers and is defined by the condition (Def. 5).

(Def. 5) Let k be a natural number. Then there exists a finite 0-sequence F_1 of \mathbb{R} such that dom $F_1 = k + 1$ and for every n such that $n \in k + 1$ holds $F_1(n) = s_1(n) \cdot s_2(k - n)$ and $\sum F_1 = (s_1(\#) \cdot s_2)(k)$.

Let us notice that the functor s_1 (#) s_2 is commutative.

One can prove the following propositions:

- (47) For all F_1 , n such that $n \in \text{dom } F_1$ holds $\sum (F_1 \upharpoonright n) + F_1(n) = \sum (F_1 \upharpoonright (n + 1)).$
- (48) For all F_2 , F_3 such that dom $F_2 = \text{dom } F_3$ and for every n such that $n \in \text{len } F_2$ holds $F_2(n) = F_3(\text{len } F_2 (1+n))$ holds $\sum F_2 = \sum F_3$.
- (49) For all F_2 , F_3 such that dom $F_2 = \text{dom } F_3$ and for every n such that $n \in \text{len } F_2$ holds $F_2(n) = r \cdot F_3(n)$ holds $\sum F_2 = r \cdot \sum F_3$.
- (50) $s_1(\#) r s_2 = r (s_1(\#) s_2).$
- (51) $s_1(\#)(s_2+s_3) = (s_1(\#)s_2) + (s_1(\#)s_3).$
- (52) $(s_1(\#)s_2)(0) = s_1(0) \cdot s_2(0).$
- (53) For all s_1, s_2, n there exists F_1 such that $(\sum_{\alpha=0}^{\kappa} (s_1(\#) s_2)(\alpha))_{\kappa \in \mathbb{N}}(n) = \sum_{\alpha=0}^{\infty} F_1$ and dom $F_1 = n + 1$ and for every i such that $i \in n + 1$ holds $F_1(i) = s_1(i) \cdot (\sum_{\alpha=0}^{\kappa} (s_2)(\alpha))_{\kappa \in \mathbb{N}}(n-i)$.
- (54) Let given s_1, s_2, n . Suppose s_2 is summable. Then there exists F_1 such that $(\sum_{\alpha=0}^{\kappa} (s_1(\#) s_2)(\alpha))_{\kappa \in \mathbb{N}}(n) = \sum s_2 \cdot (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) \sum F_1$ and dom $F_1 = n + 1$ and for every i such that $i \in n + 1$ holds $F_1(i) = s_1(i) \cdot \sum (s_2 \uparrow ((n i) + 1)).$
- (55) For every F_1 there exists a finite 0-sequence a_1 of \mathbb{R} such that dom $a_1 =$ dom F_1 and $|\sum F_1| \leq \sum a_1$ and for every i such that $i \in$ dom a_1 holds $a_1(i) = |F_1(i)|$.
- (56) For every s_1 such that s_1 is summable there exists r such that 0 < r and for every k holds $|\sum (s_1 \uparrow k)| < r$.

KAROL PĄK

- (57) For all s_1 , n, m such that $n \leq m$ and for every i holds $s_1(i) \geq 0$ holds $(\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(n) \leq (\sum_{\alpha=0}^{\kappa} (s_1)(\alpha))_{\kappa \in \mathbb{N}}(m).$
- (58) For all s_1 , s_2 such that s_1 is absolutely summable and s_2 is summable holds $s_1(\#) s_2$ is summable and $\sum (s_1(\#) s_2) = \sum s_1 \cdot \sum s_2$.
- (59) If $p = F_1$, then $\sum p = \sum F_1$.

4. The Generating Function for the Catalan Numbers

Next we state the proposition

- (60) Let given r. Then there exists a sequence C_2 of real numbers such that (i) for every n holds $C_2(n) = \text{Catalan}(n+1) \cdot r^n$, and
- (i) for every *n* holds $C_2(n) = \text{Catalan}(n+1) \cdot r^n$, and (ii) if $|r| < \frac{1}{4}$, then C_2 is absolutely summable and $\sum C_2 = 1 + r \cdot (\sum C_2)^2$ and $\sum C_2 = \frac{2}{1+\sqrt{1-4\cdot r}}$ and if $r \neq 0$, then $\sum C_2 = \frac{1-\sqrt{1-4\cdot r}}{2\cdot r}$.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [3] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45–48, 2005.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [5] Czesław Byliński. Functions and their basic properties. *Formalized Mathematics*, 1(1):55–65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
 [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
- [8] Dorota Częstochowska and Adam Grabowski. Catalan numbers. Formalized Mathematics,
- 12(3):351–353, 2004.
 [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471–475, 1990.
- [11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
- [12] Rafał Kwiatek. Factorial and Newton coefficients. *Formalized Mathematics*, 1(5):887–890, 1990.
- [13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [14] Library Committee of the Association of Mizar Users. Binary operations on numbers. *To appear in Formalized Mathematics*.
- [15] Karol Pąk. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
- [16] Karol Pąk. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337–345, 2005.
 [17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125–
- 130, 1991.
- [18] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [20] Andrzej Trybulec. Binary operations applied to functions. *Formalized Mathematics*, 1(2):329–334, 1990.
- [21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.

158

- [22] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495–500, 1990.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11, 1990.
 [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized
- [24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825–829, 2001.
- [27] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990.

Received October 31, 2006