Connectedness and Continuous Sequences in Finite Topological Spaces

Yatsuka Nakamura Shinshu University Nagano, Japan

Summary. First, equivalence conditions for connectedness are examined for a finite topological space (originated in [9]). Secondly, definitions of subspace, and components of the subspace of a finite topological space are given. Lastly, concepts of continuous finite sequence and minimum path of finite topological space are proposed.

MML identifier: FINTOPO6, version: 7.8.01 4.70.946

The articles [16], [5], [18], [13], [1], [19], [14], [3], [4], [2], [6], [12], [10], [15], [7], [11], [8], and [17] provide the terminology and notation for this paper.

1. Connectedness and Subspaces

In this paper F_1 denotes a non empty finite topology space and A, B, C denote subsets of F_1 .

Let us consider F_1 . One can check that $\emptyset_{(F_1)}$ is connected.

We now state two propositions:

- (1) For all subsets A, B of F_1 holds $(A \cup B)^b = A^b \cup B^b$.
- (2) $(\emptyset_{(F_1)})^b = \emptyset.$

Let us consider F_1 . Observe that $(\emptyset_{(F_1)})^b$ is empty.

Next we state the proposition

(3) Let A be a subset of F_1 . Suppose that for all subsets B, C of F_1 such that $A = B \cup C$ and $B \neq \emptyset$ and $C \neq \emptyset$ and B misses C holds B^b meets C and B meets C^b . Then A is connected.

Let F_1 be a non empty finite topology space. We say that F_1 is connected if and only if:

(Def. 1) $\Omega_{(F_1)}$ is connected.

We now state four propositions:

- (4) Let A be a subset of F_1 . Suppose A is connected. Let A_2 , B_2 be subsets of F_1 . Suppose $A = A_2 \cup B_2$ and A_2 misses B_2 and A_2 and B_2 are separated. Then $A_2 = \emptyset_{(F_1)}$ or $B_2 = \emptyset_{(F_1)}$.
- (5) Suppose F_1 is connected. Let A, B be subsets of F_1 . Suppose $\Omega_{(F_1)} = A \cup B$ and A misses B and A and B are separated. Then $A = \emptyset_{(F_1)}$ or $B = \emptyset_{(F_1)}$.
- (6) For all subsets A, B of F_1 such that F_1 is symmetric and A^b misses B holds A misses B^b .
- (7) Let A be a subset of F_1 . Suppose that
- (i) F_1 is symmetric, and
- (ii) for all subsets A_2 , B_2 of F_1 such that $A = A_2 \cup B_2$ and A_2 misses B_2 and A_2 and B_2 are separated holds $A_2 = \emptyset_{(F_1)}$ or $B_2 = \emptyset_{(F_1)}$. Then A is connected.

Let T be a finite topology space. A finite topology space is said to be a subspace of T if it satisfies the conditions (Def. 2).

(Def. 2)(i) The carrier of it \subseteq the carrier of T,

- (ii) dom (the neighbour-map of it) = the carrier of it, and
- (iii) for every element x of it such that $x \in$ the carrier of it holds (the neighbour-map of it)(x) = (the neighbour-map of $T)(x) \cap$ the carrier of it.

Let T be a finite topology space. Note that there exists a subspace of T which is strict.

Let T be a non empty finite topology space. Note that there exists a subspace of T which is strict and non empty.

Let T be a non empty finite topology space and let P be a non empty subset of T. The functor T
centspace P yields a strict non empty subspace of T and is defined as follows:

(Def. 3) $\Omega_{T \upharpoonright P} = P$.

We now state the proposition

(8) For every non empty subspace X of F_1 such that F_1 is filled holds X is filled

Let F_1 be a filled non empty finite topology space. Note that every non empty subspace of F_1 is filled.

Next we state a number of propositions:

- (9) For every non empty subspace X of F_1 such that F_1 is symmetric holds X is symmetric.
- (10) For every subspace X' of F_1 holds every subset of X' is a subset of F_1 .

- (11) For every subset P of F_1 holds P is closed iff P^c is open.
- (12) Let A be a subset of F_1 . Then A is open if and only if the following conditions are satisfied:
 - (i) for every element z of F_1 such that $U(z) \subseteq A$ holds $z \in A$, and
 - (ii) for every element x of F_1 such that $x \in A$ holds $U(x) \subseteq A$.
- (13) Let X' be a non empty subspace of F_1 , A be a subset of F_1 , and A_1 be a subset of X'. If $A = A_1$, then $A_1^b = A^b \cap \Omega_{X'}$.
- (14) Let X' be a non empty subspace of F_1 , P_1 , Q_1 be subsets of F_1 , and P, Q be subsets of X'. Suppose $P = P_1$ and $Q = Q_1$. If P and Q are separated, then P_1 and Q_1 are separated.
- (15) Let X' be a non empty subspace of F_1 , P, Q be subsets of F_1 , and P_1 , Q_1 be subsets of X'. Suppose $P = P_1$ and $Q = Q_1$ and $P \cup Q \subseteq \Omega_{X'}$. If P and Q are separated, then P_1 and Q_1 are separated.
- (16) For every non empty subset A of F_1 holds A is connected iff $F_1 \upharpoonright A$ is connected.
- (17) Let F_1 be a filled non empty finite topology space and A be a non empty subset of F_1 . Suppose F_1 is symmetric. Then A is connected if and only if for all subsets P, Q of F_1 such that $A = P \cup Q$ and P misses Q and P and Q are separated holds $P = \emptyset_{(F_1)}$ or $Q = \emptyset_{(F_1)}$.
- (18) For every subset A of F_1 such that F_1 is filled and connected and $A \neq \emptyset$ and $A^c \neq \emptyset$ holds $A^\delta \neq \emptyset$.
- (19) For every subset A of F_1 such that F_1 is filled, symmetric, and connected and $A \neq \emptyset$ and $A^c \neq \emptyset$ holds $A^{\delta_i} \neq \emptyset$.
- (20) For every subset A of F_1 such that F_1 is filled, symmetric, and connected and $A \neq \emptyset$ and $A^c \neq \emptyset$ holds $A^{\delta_o} \neq \emptyset$.
- (21) For every subset A of F_1 holds A^{δ_i} misses A^{δ_o} .
- (22) For every filled non empty finite topology space F_1 and for every subset A of F_1 holds $A^{\delta_o} = A^b \setminus A$.
- (23) For all subsets A, B of F_1 such that A and B are separated holds A^{δ_o} misses B.
- (24) Let A, B be subsets of F_1 . Suppose F_1 is filled and A misses B and A^{δ_o} misses B and B^{δ_o} misses A. Then A and B are separated.
- (25) For every point x of F_1 holds $\{x\}$ is connected.

Let us consider F_1 and let x be a point of F_1 . Note that $\{x\}$ is connected. Let F_1 be a non empty finite topology space and let A be a subset of F_1 . We say that A is a component of F_1 if and only if:

(Def. 4) A is connected and for every subset B of F_1 such that B is connected holds if $A \subseteq B$, then A = B.

One can prove the following propositions:

- (26) For every subset A of F_1 such that A is a component of F_1 holds $A \neq \emptyset_{(F_1)}$.
- (27) If A is closed and B is closed and A misses B, then A and B are separated.
- (28) If F_1 is filled and $\Omega_{(F_1)} = A \cup B$ and A and B are separated, then A is open and closed.
- (29) For all subsets A, B, A_1 , B_1 of F_1 such that A and B are separated and $A_1 \subseteq A$ and $B_1 \subseteq B$ holds A_1 and B_1 are separated.
- (30) If A and B are separated and A and C are separated, then A and $B \cup C$ are separated.
- (31) Suppose that
 - (i) F_1 is filled and symmetric, and
 - (ii) for all subsets A, B of F_1 such that $\Omega_{(F_1)} = A \cup B$ and $A \neq \emptyset_{(F_1)}$ and $B \neq \emptyset_{(F_1)}$ and A is closed and B is closed holds A meets B. Then F_1 is connected.
- (32) Suppose F_1 is connected. Let A, B be subsets of F_1 . Suppose $\Omega_{(F_1)} = A \cup B$ and $A \neq \emptyset_{(F_1)}$ and $B \neq \emptyset_{(F_1)}$ and A is closed and B is closed. Then A meets B.
- (33) If F_1 is filled and A is connected and $A \subseteq B \cup C$ and B and C are separated, then $A \subseteq B$ or $A \subseteq C$.
- (34) Let A, B be subsets of F_1 . Suppose F_1 is symmetric and A is connected and B is connected and A and B are not separated. Then $A \cup B$ is connected.
- (35) For all subsets A, C of F_1 such that F_1 is symmetric and C is connected and $C \subseteq A$ and $A \subseteq C^b$ holds A is connected.
- (36) For every subset C of F_1 such that F_1 is filled and symmetric and C is connected holds C^b is connected.
- (37) Suppose F_1 is filled, symmetric, and connected and A is connected and $\Omega_{(F_1)} \setminus A = B \cup C$ and B and C are separated. Then $A \cup B$ is connected.
- (38) Let X' be a non empty subspace of F_1 , A be a subset of F_1 , and B be a subset of X'. Suppose F_1 is symmetric and A = B. Then A is connected if and only if B is connected.
- (39) For every subset A of F_1 such that F_1 is filled and symmetric and A is a component of F_1 holds A is closed.
- (40) Let A, B be subsets of F_1 . Suppose F_1 is symmetric and A is a component of F_1 and B is a component of F_1 . Then A = B or A and B are separated.
- (41) Let A, B be subsets of F_1 . Suppose F_1 is filled and symmetric and A is a component of F_1 and B is a component of F_1 . Then A = B or A misses B.

(42) Let C be a subset of F_1 . Suppose F_1 is filled and symmetric and C is connected. Let S be a subset of F_1 . If S is a component of F_1 , then C misses S or $C \subseteq S$.

Let F_1 be a non empty finite topology space, let A be a non empty subset of F_1 , and let B be a subset of F_1 . We say that B is a component of A if and only if:

(Def. 5) There exists a subset B_1 of $F_1 \upharpoonright A$ such that $B_1 = B$ and B_1 is a component of $F_1 \upharpoonright A$.

We now state the proposition

- (43) Let D be a non empty subset of F_1 . Suppose F_1 is filled and symmetric and $D = \Omega_{(F_1)} \setminus A$. Suppose F_1 is connected and A is connected and C is a component of D. Then $\Omega_{(F_1)} \setminus C$ is connected.
 - 2. Continuous Finite Sequences and Minimum Path

Let us consider F_1 and let f be a finite sequence of elements of F_1 . We say that f is continuous if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) $1 \le \text{len } f$, and

(ii) for every natural number i and for every element x_1 of F_1 such that $1 \le i$ and i < len f and $x_1 = f(i)$ holds $f(i+1) \in U(x_1)$.

Let us consider F_1 and let x be an element of F_1 . Observe that $\langle x \rangle$ is continuous.

One can prove the following two propositions:

- (44) Let f be a finite sequence of elements of F_1 and x, y be elements of F_1 . If f is continuous and y = f(len f) and $x \in U(y)$, then $f \cap \langle x \rangle$ is continuous.
- (45) Let f, g be finite sequences of elements of F_1 . Suppose f is continuous and g is continuous and $g(1) \in U(f_{\text{len }f})$. Then $f \cap g$ is continuous.

Let us consider F_1 and let A be a subset of F_1 . We say that A is arcwise connected if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let x_1 , x_2 be elements of F_1 . Suppose $x_1 \in A$ and $x_2 \in A$. Then there exists a finite sequence f of elements of F_1 such that f is continuous and rng $f \subseteq A$ and $f(1) = x_1$ and $f(\operatorname{len} f) = x_2$.

Let us consider F_1 . Observe that $\emptyset_{(F_1)}$ is arcwise connected.

Let us consider F_1 and let x be an element of F_1 . One can verify that $\{x\}$ is arcwise connected.

The following three propositions are true:

- (46) For every subset A of F_1 such that F_1 is symmetric holds A is connected iff A is arcwise connected.
- (47) Let g be a finite sequence of elements of F_1 and k be a natural number. If g is continuous and $1 \le k$, then $g \upharpoonright k$ is continuous.

(48) Let g be a finite sequence of elements of F_1 and k be an element of \mathbb{N} . If g is continuous and k < len g, then $g_{|k}$ is continuous.

Let us consider F_1 , let g be a finite sequence of elements of F_1 , let A be a subset of F_1 , and let x_1 , x_2 be elements of F_1 . We say that g is minimum path in A between x_1 and x_2 if and only if the conditions (Def. 8) are satisfied.

- (Def. 8)(i) g is continuous,
 - (ii) $\operatorname{rng} g \subseteq A$,
 - (iii) $g(1) = x_1$,
 - (iv) $g(\operatorname{len} g) = x_2$, and
 - (v) for every finite sequence h of elements of F_1 such that h is continuous and rng $h \subseteq A$ and $h(1) = x_1$ and $h(\operatorname{len} h) = x_2$ holds $\operatorname{len} g \leq \operatorname{len} h$.

One can prove the following propositions:

- (49) For every subset A of F_1 and for every element x of F_1 such that $x \in A$ holds $\langle x \rangle$ is minimum path in A between x and x.
- (50) Let A be a subset of F_1 . Then A is arcwise connected if and only if for all elements x_1 , x_2 of F_1 such that $x_1 \in A$ and $x_2 \in A$ holds there exists a finite sequence of elements of F_1 which is minimum path in A between x_1 and x_2 .
- (51) Let A be a subset of F_1 and x_1 , x_2 be elements of F_1 . Given a finite sequence f of elements of F_1 such that f is continuous and rng $f \subseteq A$ and $f(1) = x_1$ and $f(\operatorname{len} f) = x_2$. Then there exists a finite sequence of elements of F_1 which is minimum path in A between x_1 and x_2 .
- (52) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , x_1 , x_2 be elements of F_1 , and k be an element of \mathbb{N} . Suppose g is minimum path in A between x_1 and x_2 and $1 \leq k$ and $k \leq \text{len } g$. Then $g \upharpoonright k$ is continuous and $\text{rng}(g \upharpoonright k) \subseteq A$ and $(g \upharpoonright k)(1) = x_1$ and $(g \upharpoonright k)(\text{len}(g \upharpoonright k)) = g_k$.
- (53) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , x_1 , x_2 be elements of F_1 , and k be an element of \mathbb{N} . Suppose g is minimum path in A between x_1 and x_2 and k < len g. Then $g_{|k}$ is continuous and $\text{rng}(g_{|k}) \subseteq A$ and $g_{|k}(1) = g_{1+k}$ and $g_{|k}(\text{len}(g_{|k})) = x_2$.
- (54) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , and x_1 , x_2 be elements of F_1 . Suppose g is minimum path in A between x_1 and x_2 . Let k be a natural number. If $1 \le k$ and $k \le \text{len } g$, then $g \upharpoonright k$ is minimum path in A between x_1 and g_k .
- (55) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , and x_1 , x_2 be elements of F_1 . If g is minimum path in A between x_1 and x_2 , then g is one-to-one.

Let us consider F_1 and let f be a finite sequence of elements of F_1 . We say that f is inversely continuous if and only if the conditions (Def. 9) are satisfied. (Def. 9)(i) $1 \le \text{len } f$, and

(ii) for all natural numbers i, j and for every element y of F_1 such that $1 \le i$ and $i \le \text{len } f$ and $1 \le j$ and $j \le \text{len } f$ and y = f(i) and $i \ne j$ and $f(j) \in U(y)$ holds i = j + 1 or j = i + 1.

We now state three propositions:

- (56) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , and x_1 , x_2 be elements of F_1 . Suppose g is minimum path in A between x_1 and x_2 and F_1 is symmetric. Then g is inversely continuous.
- (57) Let g be a finite sequence of elements of F_1 , A be a subset of F_1 , and x_1 , x_2 be elements of F_1 . Suppose g is minimum path in A between x_1 and x_2 and F_1 is filled and symmetric and $x_1 \neq x_2$. Then
 - (i) for every natural number i such that 1 < i and i < len g holds $\text{rng } g \cap U(g_i) = \{g(i 1), g(i), g(i + 1)\},$
 - (ii) $\operatorname{rng} g \cap U(g_1) = \{g(1), g(2)\}, \text{ and }$
- (iii) $\operatorname{rng} g \cap U(g_{\operatorname{len} q}) = \{g(\operatorname{len} g 1), g(\operatorname{len} g)\}.$
- (58) Let g be a finite sequence of elements of F_1 , A be a non empty subset of F_1 , x_1 , x_2 be elements of F_1 , and B_0 be a subset of $F_1 \upharpoonright A$. Suppose g is minimum path in A between x_1 and x_2 and F_1 is filled and symmetric and $x_1 \neq x_2$ and $B_0 = \{x_1\}$. Let i be an element of \mathbb{N} . If i < len g, then $g(i+1) \in \text{Finf}(B_0, i)$ and if $i \geq 1$, then $g(i+1) \notin \text{Finf}(B_0, i-1)$.

References

- [1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
- [4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.
- [6] Hiroshi Imura and Masayoshi Eguchi. Finite topological spaces. Formalized Mathematics, 3(2):189–193, 1992.
- [7] Hiroshi Imura, Masami Tanaka, and Yatsuka Nakamura. Continuous mappings between finite and one-dimensional finite topological spaces. Formalized Mathematics, 12(3):381– 384, 2004.
- [8] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275–278, 1992.
- [9] Yatsuka Nakamura. Finite topology concept for discrete spaces. In H. Umegaki, editor, Proceedings of the Eleventh Symposium on Applied Functional Analysis, pages 111–116, Noda-City, Chiba, Japan, 1988. Science University of Tokyo.
- [10] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83–86, 1993.
- [11] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [12] Masami Tanaka and Yatsuka Nakamura. Some set series in finite topological spaces. Fundamental concepts for image processing. Formalized Mathematics, 12(2):125–129, 2004
- [13] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

- [14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115–122, 1990.
- [15] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- 1990.
 [17] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579, 1990.
 [18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 18, 2006