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Summary. First, equivalence conditions for connectedness are examined

for a finite topological space (originated in [9]). Secondly, definitions of subspace,

and components of the subspace of a finite topological space are given. Lastly,

concepts of continuous finite sequence and minimum path of finite topological

space are proposed.
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The articles [16], [5], [18], [13], [1], [19], [14], [3], [4], [2], [6], [12], [10], [15], [7],

[11], [8], and [17] provide the terminology and notation for this paper.

1. Connectedness and Subspaces

In this paper F1 denotes a non empty finite topology space and A, B, C

denote subsets of F1.

Let us consider F1. One can check that ∅(F1) is connected.

We now state two propositions:

(1) For all subsets A, B of F1 holds (A ∪ B)b = Ab ∪ Bb.

(2) (∅(F1))
b = ∅.

Let us consider F1. Observe that (∅(F1))
b is empty.

Next we state the proposition

(3) Let A be a subset of F1. Suppose that for all subsets B, C of F1 such

that A = B ∪C and B 6= ∅ and C 6= ∅ and B misses C holds Bb meets C

and B meets Cb. Then A is connected.
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Let F1 be a non empty finite topology space. We say that F1 is connected

if and only if:

(Def. 1) Ω(F1) is connected.

We now state four propositions:

(4) Let A be a subset of F1. Suppose A is connected. Let A2, B2 be subsets

of F1. Suppose A = A2 ∪ B2 and A2 misses B2 and A2 and B2 are

separated. Then A2 = ∅(F1) or B2 = ∅(F1).

(5) Suppose F1 is connected. Let A, B be subsets of F1. Suppose Ω(F1) =

A ∪ B and A misses B and A and B are separated. Then A = ∅(F1) or

B = ∅(F1).

(6) For all subsets A, B of F1 such that F1 is symmetric and Ab misses B

holds A misses Bb.

(7) Let A be a subset of F1. Suppose that

(i) F1 is symmetric, and

(ii) for all subsets A2, B2 of F1 such that A = A2 ∪ B2 and A2 misses B2

and A2 and B2 are separated holds A2 = ∅(F1) or B2 = ∅(F1).

Then A is connected.

Let T be a finite topology space. A finite topology space is said to be a

subspace of T if it satisfies the conditions (Def. 2).

(Def. 2)(i) The carrier of it ⊆ the carrier of T ,

(ii) dom (the neighbour-map of it) = the carrier of it, and

(iii) for every element x of it such that x ∈ the carrier of it holds (the

neighbour-map of it)(x) = (the neighbour-map of T )(x)∩ the carrier of it.

Let T be a finite topology space. Note that there exists a subspace of T

which is strict.

Let T be a non empty finite topology space. Note that there exists a subspace

of T which is strict and non empty.

Let T be a non empty finite topology space and let P be a non empty subset

of T . The functor T ↾P yields a strict non empty subspace of T and is defined

as follows:

(Def. 3) ΩT ↾P = P.

We now state the proposition

(8) For every non empty subspace X of F1 such that F1 is filled holds X is

filled.

Let F1 be a filled non empty finite topology space. Note that every non

empty subspace of F1 is filled.

Next we state a number of propositions:

(9) For every non empty subspace X of F1 such that F1 is symmetric holds

X is symmetric.

(10) For every subspace X ′ of F1 holds every subset of X ′ is a subset of F1.



connectedness and continuous sequences . . . 95

(11) For every subset P of F1 holds P is closed iff P c is open.

(12) Let A be a subset of F1. Then A is open if and only if the following

conditions are satisfied:

(i) for every element z of F1 such that U(z) ⊆ A holds z ∈ A, and

(ii) for every element x of F1 such that x ∈ A holds U(x) ⊆ A.

(13) Let X ′ be a non empty subspace of F1, A be a subset of F1, and A1 be

a subset of X ′. If A = A1, then A1
b = Ab ∩ ΩX′ .

(14) Let X ′ be a non empty subspace of F1, P1, Q1 be subsets of F1, and

P , Q be subsets of X ′. Suppose P = P1 and Q = Q1. If P and Q are

separated, then P1 and Q1 are separated.

(15) Let X ′ be a non empty subspace of F1, P , Q be subsets of F1, and P1,

Q1 be subsets of X ′. Suppose P = P1 and Q = Q1 and P ∪ Q ⊆ ΩX′ . If

P and Q are separated, then P1 and Q1 are separated.

(16) For every non empty subset A of F1 holds A is connected iff F1↾A is

connected.

(17) Let F1 be a filled non empty finite topology space and A be a non empty

subset of F1. Suppose F1 is symmetric. Then A is connected if and only

if for all subsets P , Q of F1 such that A = P ∪ Q and P misses Q and P

and Q are separated holds P = ∅(F1) or Q = ∅(F1).

(18) For every subset A of F1 such that F1 is filled and connected and A 6= ∅
and Ac 6= ∅ holds Aδ 6= ∅.

(19) For every subset A of F1 such that F1 is filled, symmetric, and connected

and A 6= ∅ and Ac 6= ∅ holds Aδi 6= ∅.

(20) For every subset A of F1 such that F1 is filled, symmetric, and connected

and A 6= ∅ and Ac 6= ∅ holds Aδo 6= ∅.

(21) For every subset A of F1 holds Aδi misses Aδo .

(22) For every filled non empty finite topology space F1 and for every subset

A of F1 holds Aδo = Ab \ A.

(23) For all subsets A, B of F1 such that A and B are separated holds Aδo

misses B.

(24) Let A, B be subsets of F1. Suppose F1 is filled and A misses B and Aδo

misses B and Bδo misses A. Then A and B are separated.

(25) For every point x of F1 holds {x} is connected.

Let us consider F1 and let x be a point of F1. Note that {x} is connected.

Let F1 be a non empty finite topology space and let A be a subset of F1.

We say that A is a component of F1 if and only if:

(Def. 4) A is connected and for every subset B of F1 such that B is connected

holds if A ⊆ B, then A = B.

One can prove the following propositions:
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(26) For every subset A of F1 such that A is a component of F1 holds A 6=
∅(F1).

(27) If A is closed and B is closed and A misses B, then A and B are sepa-

rated.

(28) If F1 is filled and Ω(F1) = A ∪ B and A and B are separated, then A is

open and closed.

(29) For all subsets A, B, A1, B1 of F1 such that A and B are separated and

A1 ⊆ A and B1 ⊆ B holds A1 and B1 are separated.

(30) If A and B are separated and A and C are separated, then A and B ∪C

are separated.

(31) Suppose that

(i) F1 is filled and symmetric, and

(ii) for all subsets A, B of F1 such that Ω(F1) = A ∪ B and A 6= ∅(F1) and

B 6= ∅(F1) and A is closed and B is closed holds A meets B.

Then F1 is connected.

(32) Suppose F1 is connected. Let A, B be subsets of F1. Suppose Ω(F1) =

A∪B and A 6= ∅(F1) and B 6= ∅(F1) and A is closed and B is closed. Then

A meets B.

(33) If F1 is filled and A is connected and A ⊆ B ∪ C and B and C are

separated, then A ⊆ B or A ⊆ C.

(34) Let A, B be subsets of F1. Suppose F1 is symmetric and A is connected

and B is connected and A and B are not separated. Then A ∪ B is

connected.

(35) For all subsets A, C of F1 such that F1 is symmetric and C is connected

and C ⊆ A and A ⊆ Cb holds A is connected.

(36) For every subset C of F1 such that F1 is filled and symmetric and C is

connected holds Cb is connected.

(37) Suppose F1 is filled, symmetric, and connected and A is connected and

Ω(F1) \A = B ∪C and B and C are separated. Then A∪B is connected.

(38) Let X ′ be a non empty subspace of F1, A be a subset of F1, and B be a

subset of X ′. Suppose F1 is symmetric and A = B. Then A is connected

if and only if B is connected.

(39) For every subset A of F1 such that F1 is filled and symmetric and A is

a component of F1 holds A is closed.

(40) Let A, B be subsets of F1. Suppose F1 is symmetric and A is a com-

ponent of F1 and B is a component of F1. Then A = B or A and B are

separated.

(41) Let A, B be subsets of F1. Suppose F1 is filled and symmetric and A is

a component of F1 and B is a component of F1. Then A = B or A misses

B.
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(42) Let C be a subset of F1. Suppose F1 is filled and symmetric and C is

connected. Let S be a subset of F1. If S is a component of F1, then C

misses S or C ⊆ S.

Let F1 be a non empty finite topology space, let A be a non empty subset

of F1, and let B be a subset of F1. We say that B is a component of A if and

only if:

(Def. 5) There exists a subset B1 of F1↾A such that B1 = B and B1 is a compo-

nent of F1↾A.

We now state the proposition

(43) Let D be a non empty subset of F1. Suppose F1 is filled and symmetric

and D = Ω(F1) \ A. Suppose F1 is connected and A is connected and C is

a component of D. Then Ω(F1) \ C is connected.

2. Continuous Finite Sequences and Minimum Path

Let us consider F1 and let f be a finite sequence of elements of F1. We say

that f is continuous if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) 1 ≤ len f, and

(ii) for every natural number i and for every element x1 of F1 such that

1 ≤ i and i < len f and x1 = f(i) holds f(i + 1) ∈ U(x1).

Let us consider F1 and let x be an element of F1. Observe that 〈x〉 is

continuous.

One can prove the following two propositions:

(44) Let f be a finite sequence of elements of F1 and x, y be elements of F1. If

f is continuous and y = f(len f) and x ∈ U(y), then f a 〈x〉 is continuous.

(45) Let f , g be finite sequences of elements of F1. Suppose f is continuous

and g is continuous and g(1) ∈ U(flen f ). Then f a g is continuous.

Let us consider F1 and let A be a subset of F1. We say that A is arcwise

connected if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let x1, x2 be elements of F1. Suppose x1 ∈ A and x2 ∈ A. Then there

exists a finite sequence f of elements of F1 such that f is continuous and

rng f ⊆ A and f(1) = x1 and f(len f) = x2.

Let us consider F1. Observe that ∅(F1) is arcwise connected.

Let us consider F1 and let x be an element of F1. One can verify that {x}
is arcwise connected.

The following three propositions are true:

(46) For every subset A of F1 such that F1 is symmetric holds A is connected

iff A is arcwise connected.

(47) Let g be a finite sequence of elements of F1 and k be a natural number.

If g is continuous and 1 ≤ k, then g↾k is continuous.
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(48) Let g be a finite sequence of elements of F1 and k be an element of N.

If g is continuous and k < len g, then g⇂k is continuous.

Let us consider F1, let g be a finite sequence of elements of F1, let A be a

subset of F1, and let x1, x2 be elements of F1. We say that g is minimum path

in A between x1 and x2 if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(i) g is continuous,

(ii) rng g ⊆ A,

(iii) g(1) = x1,

(iv) g(len g) = x2, and

(v) for every finite sequence h of elements of F1 such that h is continuous

and rng h ⊆ A and h(1) = x1 and h(len h) = x2 holds len g ≤ len h.

One can prove the following propositions:

(49) For every subset A of F1 and for every element x of F1 such that x ∈ A

holds 〈x〉 is minimum path in A between x and x.

(50) Let A be a subset of F1. Then A is arcwise connected if and only if for

all elements x1, x2 of F1 such that x1 ∈ A and x2 ∈ A holds there exists

a finite sequence of elements of F1 which is minimum path in A between

x1 and x2.

(51) Let A be a subset of F1 and x1, x2 be elements of F1. Given a finite

sequence f of elements of F1 such that f is continuous and rng f ⊆ A

and f(1) = x1 and f(len f) = x2. Then there exists a finite sequence of

elements of F1 which is minimum path in A between x1 and x2.

(52) Let g be a finite sequence of elements of F1, A be a subset of F1, x1, x2

be elements of F1, and k be an element of N. Suppose g is minimum path

in A between x1 and x2 and 1 ≤ k and k ≤ len g. Then g↾k is continuous

and rng(g↾k) ⊆ A and (g↾k)(1) = x1 and (g↾k)(len(g↾k)) = gk.

(53) Let g be a finite sequence of elements of F1, A be a subset of F1, x1,

x2 be elements of F1, and k be an element of N. Suppose g is minimum

path in A between x1 and x2 and k < len g. Then g⇂k is continuous and

rng(g⇂k) ⊆ A and g⇂k(1) = g1+k and g⇂k(len(g⇂k)) = x2.

(54) Let g be a finite sequence of elements of F1, A be a subset of F1, and

x1, x2 be elements of F1. Suppose g is minimum path in A between x1

and x2. Let k be a natural number. If 1 ≤ k and k ≤ len g, then g↾k is

minimum path in A between x1 and gk.

(55) Let g be a finite sequence of elements of F1, A be a subset of F1, and

x1, x2 be elements of F1. If g is minimum path in A between x1 and x2,

then g is one-to-one.

Let us consider F1 and let f be a finite sequence of elements of F1. We say

that f is inversely continuous if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) 1 ≤ len f, and
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(ii) for all natural numbers i, j and for every element y of F1 such that

1 ≤ i and i ≤ len f and 1 ≤ j and j ≤ len f and y = f(i) and i 6= j and

f(j) ∈ U(y) holds i = j + 1 or j = i + 1.

We now state three propositions:

(56) Let g be a finite sequence of elements of F1, A be a subset of F1, and x1,

x2 be elements of F1. Suppose g is minimum path in A between x1 and

x2 and F1 is symmetric. Then g is inversely continuous.

(57) Let g be a finite sequence of elements of F1, A be a subset of F1, and x1,

x2 be elements of F1. Suppose g is minimum path in A between x1 and

x2 and F1 is filled and symmetric and x1 6= x2. Then

(i) for every natural number i such that 1 < i and i < len g holds rng g ∩

U(gi) = {g(i −′ 1), g(i), g(i + 1)},

(ii) rng g ∩ U(g1) = {g(1), g(2)}, and

(iii) rng g ∩ U(glen g) = {g(len g −′ 1), g(len g)}.

(58) Let g be a finite sequence of elements of F1, A be a non empty subset

of F1, x1, x2 be elements of F1, and B0 be a subset of F1↾A. Suppose g

is minimum path in A between x1 and x2 and F1 is filled and symmetric

and x1 6= x2 and B0 = {x1}. Let i be an element of N. If i < len g, then

g(i + 1) ∈ Finf(B0, i) and if i ≥ 1, then g(i + 1) /∈ Finf(B0, i −
′ 1).
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