Chordal Graphs ${ }^{1}$

Broderick Arneson
University of Alberta
Edmonton, Canada

Piotr Rudnicki
University of Alberta
Edmonton, Canada

Abstract

Summary. We are formalizing [9, pp. 81-84] where chordal graphs are defined and their basic characterization is given. This formalization is a part of the M.Sc. work of the first author under supervision of the second author.

MML identifier: CHORD, version: 7.8.01 4.70.946

The terminology and notation used here are introduced in the following articles: [18], [21], [3], [16], [22], [5], [6], [4], [1], [8], [19], [2], [12], [11], [10], [7], [14], [17], [20], [15], and [13].

1. Preliminaries

One can prove the following propositions:
(1) For every non zero natural number n holds $n-1$ is a natural number and $1 \leq n$.
(2) For every odd natural number n holds $n-1$ is a natural number and $1 \leq n$.
(3) For all odd integers n, m such that $n<m$ holds $n \leq m-2$.
(4) For all odd integers n, m such that $m<n$ holds $m+2 \leq n$.
(5) For every odd natural number n such that $1 \neq n$ there exists an odd natural number m such that $m+2=n$.
(6) For every odd natural number n such that $n \leq 2$ holds $n=1$.
(7) For every odd natural number n such that $n \leq 4$ holds $n=1$ or $n=3$.
(8) For every odd natural number n such that $n \leq 6$ holds $n=1$ or $n=3$ or $n=5$.

[^0](9) For every odd natural number n such that $n \leq 8$ holds $n=1$ or $n=3$ or $n=5$ or $n=7$.
(10) For every even natural number n such that $n \leq 1$ holds $n=0$.
(11) For every even natural number n such that $n \leq 3$ holds $n=0$ or $n=2$.
(12) For every even natural number n such that $n \leq 5$ holds $n=0$ or $n=2$ or $n=4$.
(13) For every even natural number n such that $n \leq 7$ holds $n=0$ or $n=2$ or $n=4$ or $n=6$.
(14) For every finite sequence p and for every non zero natural number n such that p is one-to-one and $n \leq \operatorname{len} p$ holds $p(n) \leftarrow p=n$.
(15) Let p be a non empty finite sequence and T be a non empty subset of $\operatorname{rng} p$. Then there exists a set x such that $x \in T$ and for every set y such that $y \in T$ holds $x \leftarrow p \leq y \leftarrow p$.
Let p be a finite sequence and let n be a natural number. The functor p.followSet (n) yields a finite set and is defined as follows:
(Def. 1) p.followSet $(n)=\operatorname{rng}\langle p(n), \ldots, p(\operatorname{len} p)\rangle$.
The following three propositions are true:
(16) Let p be a finite sequence, x be a set, and n be a natural number. Suppose $x \in \operatorname{rng} p$ and $n \in \operatorname{dom} p$ and p is one-to-one. Then $x \in p$.followSet (n) if and only if $x \leftrightarrow p \geq n$.
(17) Let p, q be finite sequences and x be a set. If $p=\langle x\rangle^{\wedge} q$, then for every non zero natural number n holds p.followSet $(n+1)=q$.followSet (n).
(18) Let X be a set, f be a finite sequence of elements of X, and g be a FinSubsequence of f. If len $\operatorname{Seq} g=\operatorname{len} f$, then $\operatorname{Seq} g=f$.

2. Miscellany on Graphs

Next we state a number of propositions:
(19) Let G be a graph, S be a subset of the vertices of G, H be a subgraph of G induced by S, and u, v be sets. Suppose $u \in S$ and $v \in S$. Let e be a set. If e joins u and v in G, then e joins u and v in H.
(20) For every graph G and for every walk W of G holds W is trail-like iff len $W=2 \cdot \operatorname{card}(W \cdot \operatorname{edges}())+1$.
(21) Let G be a graph, S be a subset of the vertices of G, H be a subgraph of G with vertices S removed, and W be a walk of G. Suppose that for every odd natural number n such that $n \leq$ len W holds $W(n) \notin S$. Then W is a walk of H.
(22) Let G be a graph and a, b be sets. Suppose $a \neq b$. Let W be a walk of G. If W.vertices ()$=\{a, b\}$, then there exists a set e such that e joins a and b in G.
(23) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, and W be a walk of G. If W.vertices () $\subseteq S$, then W is a walk of H.
(24) Let G_{1}, G_{2} be graphs. Suppose $G_{1}={ }_{G} G_{2}$. Let W_{1} be a walk of G_{1} and W_{2} be a walk of G_{2}. If $W_{1}=W_{2}$, then if W_{1} is cycle-like, then W_{2} is cycle-like.
(25) Let G be a graph, P be a path of G, and m, n be odd natural numbers. Suppose $m \leq \operatorname{len} P$ and $n \leq \operatorname{len} P$ and $P(m)=P(n)$. Then $m=n$ or $m=1$ and $n=\operatorname{len} P$ or $m=\operatorname{len} P$ and $n=1$.
(26) Let G be a graph and P be a path of G. Suppose P is open. Let a, e, b be sets. Suppose $a \notin P$.vertices() and $b=P$.first() and e joins a and b in G. Then $(G$.walkOf $(a, e, b))$.append (P) is path-like.
(27) Let G be a graph and P, H be paths of G. Suppose P.edges() misses H.edges () and P is non trivial and open and H is non trivial and open and P.vertices ()$\cap H$.vertices ()$=\{P$.first ()$, P$.last ()$\}$ and H.first ()$=P$.last () and H.last ()$=P$.first () . Then P.append (H) is cycle-like.
(28) For every graph G and for all walks W_{1}, W_{2} of G such that $W_{1} \cdot \operatorname{last}()=$ $W_{2} \cdot$ first () holds $\left(W_{1} \cdot \operatorname{append}\left(W_{2}\right)\right) \cdot \operatorname{length}()=W_{1} \cdot$ length ()$+W_{2} \cdot$ length () .
(29) Let G be a graph and A, B be non empty subsets of the vertices of G. Suppose $B \subseteq A$. Let H_{1} be a subgraph of G induced by A. Then every subgraph of H_{1} induced by B is a subgraph of G induced by B.
(30) Let G be a graph and A, B be non empty subsets of the vertices of G. Suppose $B \subseteq A$. Let H_{1} be a subgraph of G induced by A. Then every subgraph of G induced by B is a subgraph of H_{1} induced by B.
(31) Let G be a graph and S, T be non empty subsets of the vertices of G. If $T \subseteq S$, then for every subgraph G_{2} of G induced by S holds G_{2}.edgesBetween $(T)=G$.edgesBetween (T).
The scheme FinGraphOrderCompInd concerns a unary predicate \mathcal{P}, and states that:

For every finite graph G holds $\mathcal{P}[G]$
provided the parameters meet the following condition:

- Let k be a non zero natural number. Suppose that for every finite graph G_{3} such that G_{3}.order ()$<k$ holds $\mathcal{P}\left[G_{3}\right]$. Let G_{4} be a finite graph. If G_{4}.order ()$=k$, then $\mathcal{P}\left[G_{4}\right]$.
We now state two propositions:
(32) For every graph G and for every walk W of G such that W is open and path-like holds W is vertex-distinct.
(33) Let G be a graph and P be a path of G. Suppose P is open and len $P>3$. Let e be a set. If e joins P.last() and P.first() in G, then P.addEdge (e) is cycle-like.

3. Shortest Topological Path

Let G be a graph and let W be a walk of G. We say that W is minimum length if and only if:
(Def. 2) For every walk W_{2} of G such that W_{2} is walk from W.first() to W.last() holds len $W_{2} \geq$ len W.
The following propositions are true:
(34) For every graph G and for every walk W of G and for every subwalk S of W such that $S . \operatorname{first}()=W . \operatorname{first}()$ and $S . \operatorname{edgeSeq}()=W . \operatorname{edgeSeq}()$ holds $S=W$.
(35) For every graph G and for every walk W of G and for every subwalk S of W such that len $S=$ len W holds $S=W$.
(36) For every graph G and for every walk W of G such that W is minimum length holds W is path-like.
(37) For every graph G and for every walk W of G such that W is minimum length holds W is path-like.
(38) Let G be a graph and W be a walk of G. Suppose that for every path P of G such that P is walk from W.first() to W.last() holds len $P \geq \operatorname{len} W$. Then W is minimum length.
(39) For every graph G and for every walk W of G holds there exists a path of G which is walk from W.first() to W.last() and minimum length.
(40) Let G be a graph and W be a walk of G. Suppose W is minimum length. Let m, n be odd natural numbers. Suppose $m+2<n$ and $n \leq$ len W. Then it is not true that there exists a set e such that e joins $W(m)$ and $W(n)$ in G.
(41) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, and W be a walk of H. Suppose W is minimum length. Let m, n be odd natural numbers. Suppose $m+2<n$ and $n \leq$ len W. Then it is not true that there exists a set e such that e joins $W(m)$ and $W(n)$ in G.
(42) Let G be a graph and W be a walk of G. Suppose W is minimum length. Let m, n be odd natural numbers. If $m \leq n$ and $n \leq$ len W, then W.cut (m, n) is minimum length.
(43) Let G be a graph. Suppose G is connected. Let A, B be non empty subsets of the vertices of G. Suppose A misses B. Then there exists a path P of G such that
(i) $\quad P$ is minimum length and non trivial,
(ii) $\quad P$.first ()$\in A$,
(iii) P.last ()$\in B$, and
(iv) for every odd natural number n such that $1<n$ and $n<\operatorname{len} P$ holds $P(n) \notin A$ and $P(n) \notin B$.

4. Adjacency and Complete Graphs

Let G be a graph and let a, b be vertices of G. We say that a and b are adjacent if and only if:
(Def. 3) There exists a set e such that e joins a and b in G.
Let us note that the predicate a and b are adjacent is symmetric.
Next we state several propositions:
(44) Let G_{1}, G_{2} be graphs. Suppose $G_{1}={ }_{G} G_{2}$. Let u_{1}, v_{1} be vertices of G_{1}. Suppose u_{1} and v_{1} are adjacent. Let u_{2}, v_{2} be vertices of G_{2}. If $u_{1}=u_{2}$ and $v_{1}=v_{2}$, then u_{2} and v_{2} are adjacent.
(45) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, u, v be vertices of G, and t, w be vertices of H. Suppose $u=t$ and $v=w$. Then u and v are adjacent if and only if t and w are adjacent.
(46) For every graph G and for every walk W of G such that W.first ()\neq $W . \operatorname{last}()$ and $W . \operatorname{first}()$ and $W \cdot \operatorname{last}()$ are not adjacent holds $W \cdot \operatorname{length}() \geq$ 2.
(47) Let G be a graph and v_{1}, v_{2}, v_{3} be vertices of G. Suppose $v_{1} \neq v_{2}$ and $v_{1} \neq v_{3}$ and $v_{2} \neq v_{3}$ and v_{1} and v_{2} are adjacent and v_{2} and v_{3} are adjacent. Then there exists a path P of G and there exist sets e_{1}, e_{2} such that P is open and len $P=5$ and P.length ()$=2$ and e_{1} joins v_{1} and v_{2} in G and e_{2} joins v_{2} and v_{3} in G and P.edges ()$=\left\{e_{1}, e_{2}\right\}$ and P.vertices ()$=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $P(1)=v_{1}$ and $P(3)=v_{2}$ and $P(5)=v_{3}$.
(48) Let G be a graph and $v_{1}, v_{2}, v_{3}, v_{4}$ be vertices of G. Suppose that $v_{1} \neq v_{2}$ and $v_{1} \neq v_{3}$ and $v_{2} \neq v_{3}$ and $v_{2} \neq v_{4}$ and $v_{3} \neq v_{4}$ and v_{1} and v_{2} are adjacent and v_{2} and v_{3} are adjacent and v_{3} and v_{4} are adjacent. Then there exists a path P of G such that len $P=7$ and $P . l e n g t h()=3$ and P.vertices ()$=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $P(1)=v_{1}$ and $P(3)=v_{2}$ and $P(5)=v_{3}$ and $P(7)=v_{4}$.
Let G be a graph and let S be a set. The functor G.adjacentSet (S) yields a subset of the vertices of G and is defined as follows:
(Def. 4) G.adjacentSet $(S)=\{u ; u$ ranges over vertices of G : $u \notin S \wedge$ $\bigvee_{v: \text { vertex of } G}(v \in S \wedge u$ and v are adjacent $\left.)\right\}$.
One can prove the following propositions:
(49) For every graph G and for all sets S, x such that $x \in G \cdot \operatorname{adjacentSet}(S)$ holds $x \notin S$.
(50) Let G be a graph, S be a set, and u be a vertex of G. Then $u \in$ G.adjacentSet (S) if and only if the following conditions are satisfied:
(i) $u \notin S$, and
(ii) there exists a vertex v of G such that $v \in S$ and u and v are adjacent.
(51) For all graphs G_{1}, G_{2} such that $G_{1}={ }_{G} G_{2}$ and for every set S holds $G_{1} \cdot \operatorname{adjacentSet}(S)=G_{2} \cdot \operatorname{adjacentSet}(S)$.
(52) For every graph G and for all vertices u, v of G holds $u \in$ G.adjacentSet $(\{v\})$ iff $u \neq v$ and v and u are adjacent.
(53) For every graph G and for all sets x, y holds $x \in G$.adjacentSet $(\{y\})$ iff $y \in G \cdot \operatorname{adjacentSet}(\{x\})$.
(54) Let G be a graph and C be a path of G. Suppose C is cycle-like and C.length ()>3. Let x be a vertex of G. Suppose $x \in C$.vertices(). Then there exist odd natural numbers m, n such that $m+2<n$ and $n \leq \operatorname{len} C$ and $m=1$ and $n=\operatorname{len} C$ and $m=1$ and $n=\operatorname{len} C-2$ and $m=3$ and $n=\operatorname{len} C$ and $C(m) \neq C(n)$ and $C(m) \in G$.adjacentSet $(\{x\})$ and $C(n) \in G$.adjacentSet $(\{x\})$.
(55) Let G be a graph and C be a path of G. Suppose C is cycle-like and C.length ()>3. Let x be a vertex of G. Suppose $x \in C$.vertices(). Then there exist odd natural numbers m, n such that
(i) $m+2<n$,
(ii) $n \leq \operatorname{len} C$,
(iii) $\quad C(m) \neq C(n)$,
(iv) $C(m) \in G$.adjacentSet $(\{x\})$,
(v) $C(n) \in G$.adjacentSet $(\{x\})$, and
(vi) for every set e such that $e \in C$.edges() holds e does not join $C(m)$ and $C(n)$ in G.
(56) For every loopless graph G and for every vertex u of G holds G.adjacentSet $(\{u\})=\emptyset$ iff u is isolated.
(57) Let G be a graph, G_{0} be a subgraph of G, S be a non empty subset of the vertices of G, x be a vertex of G, G_{1} be a subgraph of G induced by S, and G_{2} be a subgraph of G induced by $S \cup\{x\}$. If G_{1} is connected and $x \in G$.adjacentSet(the vertices of G_{1}), then G_{2} is connected.
(58) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, and u be a vertex of G. Suppose $u \in S$ and G.adjacentSet $(\{u\}) \subseteq S$. Let v be a vertex of H. If $u=v$, then $G \cdot \operatorname{adjacentSet}(\{u\})=H \cdot \operatorname{adjacentSet}(\{v\})$.
Let G be a graph and let S be a set. A subgraph of G is called an adjacency graph of S in G if:
(Def. 5) It is a subgraph of G induced by G.adjacentSet (S) if S is a subset of the vertices of G.
Next we state two propositions:
(59) Let G_{1}, G_{2} be graphs. Suppose $G_{1}={ }_{G} G_{2}$. Let u_{1} be a vertex of G_{1} and u_{2} be a vertex of G_{2}. Suppose $u_{1}=u_{2}$. Let H_{1} be an adjacency graph of $\left\{u_{1}\right\}$ in G_{1} and H_{2} be an adjacency graph of $\left\{u_{2}\right\}$ in G_{2}. Then $H_{1}=G H_{2}$.
(60) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, and u be a vertex of G. Suppose $u \in S$ and G.adjacentSet $(\{u\}) \subseteq S$ and G.adjacentSet $(\{u\}) \neq \emptyset$. Let v be a vertex of H. Suppose $u=v$. Let G_{5} be an adjacency graph of $\{u\}$ in G and H_{3} be an adjacency graph of $\{v\}$ in H. Then $G_{5}={ }_{G} H_{3}$.
Let G be a graph. We say that G is complete if and only if:
(Def. 6) For all vertices u, v of G such that $u \neq v$ holds u and v are adjacent.
We now state the proposition
(61) For every graph G such that G is trivial holds G is complete.

One can check that every graph which is trivial is also complete.
Let us note that there exists a graph which is trivial, simple, and complete and there exists a graph which is non trivial, finite, simple, and complete.

The following propositions are true:
(62) For all graphs G_{1}, G_{2} such that $G_{1}={ }_{G} G_{2}$ holds if G_{1} is complete, then G_{2} is complete.
(63) For every complete graph G and for every subset S of the vertices of G holds every subgraph of G induced by S is complete.

5. Simplicial Vertex

Let G be a graph and let v be a vertex of G. We say that v is simplicial if and only if:
(Def. 7) If G.adjacentSet $(\{v\}) \neq \emptyset$, then every adjacency graph of $\{v\}$ in G is complete.
The following propositions are true:
(64) For every complete graph G holds every vertex of G is simplicial.
(65) For every trivial graph G holds every vertex of G is simplicial.
(66) Let G_{1}, G_{2} be graphs. Suppose $G_{1}={ }_{G} G_{2}$. Let u_{1} be a vertex of G_{1} and u_{2} be a vertex of G_{2}. If $u_{1}=u_{2}$ and u_{1} is simplicial, then u_{2} is simplicial.
(67) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, and u be a vertex of G. Suppose $u \in S$ and G.adjacentSet $(\{u\}) \subseteq S$. Let v be a vertex of H. If $u=v$, then u is simplicial iff v is simplicial.
(68) Let G be a graph and v be a vertex of G. Suppose v is simplicial. Let a, b be sets. Suppose $a \neq b$ and $a \in G$.adjacentSet($\{v\})$ and $b \in$ G.adjacentSet $(\{v\})$. Then there exists a set e such that e joins a and b in G.
(69) Let G be a graph and v be a vertex of G. Suppose v is not simplicial. Then there exist vertices a, b of G such that $a \neq b$ and $v \neq a$ and $v \neq b$ and v and a are adjacent and v and b are adjacent and a and b are not adjacent.

6. Vertex Separator

Let G be a graph and let a, b be vertices of G. Let us assume that $a \neq b$ and a and b are not adjacent. A subset of the vertices of G is said to be a vertex separator of a and b if:
(Def. 8) $\quad a \notin$ it and $b \notin$ it and for every subgraph G_{2} of G with vertices it removed holds there exists no walk of G_{2} which is walk from a to b.
Next we state several propositions:
(70) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Then every vertex separator of a and b is a vertex separator of b and a.
(71) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a subset of the vertices of G. Then S is a vertex separator of a and b if and only if $a \notin S$ and $b \notin S$ and for every walk W of G such that W is walk from a to b there exists a vertex x of G such that $x \in S$ and $x \in W$.vertices().
(72) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b and W be a walk of G. Suppose W is walk from a to b. Then there exists an odd natural number k such that $1<k$ and $k<$ len W and $W(k) \in S$.
(73) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. If $S=\emptyset$, then there exists no walk of G which is walk from a to b.
(74) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent and there exists no walk of G which is walk from a to b. Then \emptyset is a vertex separator of a and b.
(75) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b, G_{2} be a subgraph of G with vertices S removed, and a_{2} be a vertex of G_{2}. If $a_{2}=a$, then $\left(G_{2}\right.$.reachableFrom $\left.\left(a_{2}\right)\right) \cap S=\emptyset$.
(76) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b, G_{2} be a subgraph of G with vertices S removed, and a_{2}, b_{2} be vertices of G_{2}. If $a_{2}=a$ and $b_{2}=b$, then $\left(G_{2}\right.$.reachableFrom $\left.\left(a_{2}\right)\right) \cap\left(G_{2}\right.$.reachableFrom $\left.\left(b_{2}\right)\right)=\emptyset$.
(77) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b and G_{2} be a subgraph of G with vertices S removed. Then a is a vertex of G_{2} and b is a vertex of G_{2}.
Let G be a graph, let a, b be vertices of G, and let S be a vertex separator of a and b. We say that S is minimal if and only if:
(Def. 9) For every subset T of S such that $T \neq S$ holds T is not a vertex separator of a and b.
Next we state several propositions:
(78) Let G be a graph, a, b be vertices of G, and S be a vertex separator of a and b. If $S=\emptyset$, then S is minimal.
(79) For every finite graph G and for all vertices a, b of G holds there exists a vertex separator of a and b which is minimal.
(80) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let T be a vertex separator of b and a. If $S=T$, then T is minimal.
(81) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let x be a vertex of G. If $x \in S$, then there exists a walk W of G such that W is walk from a to b and $x \in W$.vertices().
(82) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let H be a subgraph of G with vertices S removed and a_{1} be a vertex of H. Suppose $a_{1}=a$. Let x be a vertex of G. Suppose $x \in S$. Then there exists a vertex y of G such that $y \in H$.reachableFrom $\left(a_{1}\right)$ and x and y are adjacent.
(83) Let G be a graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let H be a subgraph of G with vertices S removed and a_{1} be a vertex of H. Suppose $a_{1}=b$. Let x be a vertex of G. Suppose $x \in S$. Then there exists a vertex y of G such that $y \in H$.reachableFrom $\left(a_{1}\right)$ and x and y are adjacent.

7. Chordal Graphs

Let G be a graph and let W be a walk of G. We say that W is chordal if and only if the condition (Def. 10) is satisfied.
(Def. 10) There exist odd natural numbers m, n such that
(i) $m+2<n$,
(ii) $n \leq \operatorname{len} W$,
(iii) $\quad W(m) \neq W(n)$,
(iv) there exists a set e such that e joins $W(m)$ and $W(n)$ in G, and
(v) for every set f such that $f \in W$.edges() holds f does not join $W(m)$ and $W(n)$ in G.
Let G be a graph and let W be a walk of G. We introduce W is chordless as an antonym of W is chordal.

Next we state a number of propositions:
(84) Let G be a graph and W be a walk of G. Suppose W is chordal. Then there exist odd natural numbers m, n such that
(i) $m+2<n$,
(ii) $n \leq \operatorname{len} W$,
(iii) $W(m) \neq W(n)$,
(iv) there exists a set e such that e joins $W(m)$ and $W(n)$ in G, and
(v) if W is cycle-like, then $m=1$ and $n=\operatorname{len} W$ and $m=1$ and $n=$ len $W-2$ and $m=3$ and $n=\operatorname{len} W$.
(85) Let G be a graph and P be a path of G. Given odd natural numbers m, n such that
(i) $m+2<n$,
(ii) $n \leq \operatorname{len} P$,
(iii) there exists a set e such that e joins $P(m)$ and $P(n)$ in G, and
(iv) if P is cycle-like, then $m=1$ and $n=\operatorname{len} P$ and $m=1$ and $n=\operatorname{len} P-2$ and $m=3$ and $n=$ len P. Then P is chordal.
(86) Let G_{1}, G_{2} be graphs. Suppose $G_{1}={ }_{G} G_{2}$. Let W_{1} be a walk of G_{1} and W_{2} be a walk of G_{2}. If $W_{1}=W_{2}$, then if W_{1} is chordal, then W_{2} is chordal.
(87) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, W_{1} be a walk of G, and W_{2} be a walk of H. If $W_{1}=W_{2}$, then W_{2} is chordal iff W_{1} is chordal.
(88) Let G be a graph and W be a walk of G. Suppose W is cycle-like and chordal and W.length ()$=4$. Then there exists a set e such that e joins $W(1)$ and $W(5)$ in G or e joins $W(3)$ and $W(7)$ in G.
(89) For every graph G and for every walk W of G such that W is minimum length holds W is chordless.
(90) Let G be a graph and W be a walk of G. Suppose W is open and len $W=$ 5 and W.first() and W.last() are not adjacent. Then W is chordless.
(91) For every graph G and for every walk W of G holds W is chordal iff W.reverse() is chordal.
(92) Let G be a graph and P be a path of G. Suppose P is open and chordless. Let m, n be odd natural numbers. Suppose $m<n$ and $n \leq \operatorname{len} P$. Then there exists a set e such that e joins $P(m)$ and $P(n)$ in G if and only if $m+2=n$.
(93) Let G be a graph and P be a path of G. Suppose P is open and chordless. Let m, n be odd natural numbers. If $m<n$ and $n \leq \operatorname{len} P$, then P.cut (m, n) is chordless and $P . \operatorname{cut}(m, n)$ is open.
(94) Let G be a graph, S be a non empty subset of the vertices of G, H be a subgraph of G induced by S, W be a walk of G, and V be a walk of H. If $W=V$, then W is chordless iff V is chordless.
Let G be a graph. We say that G is chordal if and only if:
(Def. 11) For every walk P of G such that P.length ()>3 and P is cycle-like holds P is chordal.
Next we state two propositions:
(95) For all graphs G_{1}, G_{2} such that $G_{1}={ }_{G} G_{2}$ holds if G_{1} is chordal, then G_{2} is chordal.
(96) For every finite graph G such that card (the vertices of G) ≤ 3 holds G is chordal.

One can verify the following observations:

* there exists a graph which is trivial, finite, and chordal,
* there exists a graph which is non trivial, finite, simple, and chordal, and
* every graph which is complete is also chordal.

Let G be a chordal graph and let V be a set. One can check that every subgraph of G induced by V is chordal.

Next we state several propositions:
(97) Let G be a chordal graph and P be a path of G. Suppose P is open and chordless. Let x, e be sets. Suppose $x \notin P$.vertices() and e joins P.last() and x in G and it is not true that there exists a set f such that f joins $P(\operatorname{len} P-2)$ and x in G. Then P.addEdge (e) is path-like and P.addEdge (e) is open and P.addEdge (e) is chordless.
(98) Let G be a chordal graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. If S is minimal and non empty, then every subgraph of G induced by S is complete.
(99) Let G be a finite graph. Suppose that for all vertices a, b of G such that
$a \neq b$ and a and b are not adjacent and for every vertex separator S of a and b such that S is minimal and non empty holds every subgraph of G induced by S is complete. Then G is chordal.
(100) Let G be a finite chordal graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let H be a subgraph of G with vertices S removed and a_{3} be a vertex of H. Suppose $a=a_{3}$. Then there exists a vertex c of G such that $c \in H$.reachableFrom $\left(a_{3}\right)$ and for every vertex x of G such that $x \in S$ holds c and x are adjacent.
(101) Let G be a finite chordal graph and a, b be vertices of G. Suppose $a \neq b$ and a and b are not adjacent. Let S be a vertex separator of a and b. Suppose S is minimal. Let H be a subgraph of G with vertices S removed and a_{3} be a vertex of H. Suppose $a=a_{3}$. Let x, y be vertices of G. Suppose $x \in S$ and $y \in S$. Then there exists a vertex c of G such that $c \in H$.reachableFrom $\left(a_{3}\right)$ and c and x are adjacent and c and y are adjacent.
(102) Let G be a non trivial finite chordal graph. Suppose G is not complete. Then there exist vertices a, b of G such that $a \neq b$ and a and b are not adjacent and a is simplicial and b is simplicial.
(103) For every finite chordal graph G holds there exists a vertex of G which is simplicial.

8. Vertex Elimination Scheme

Let G be a finite graph. A finite sequence of elements of the vertices of G is said to be a vertex scheme of G if:
(Def. 12) It is one-to-one and rng it $=$ the vertices of G.
Let G be a finite graph. Note that every vertex scheme of G is non empty. The following three propositions are true:
(104) For every finite graph G and for every vertex scheme S of G holds len $S=$ card (the vertices of G).
(105) For every finite graph G and for every vertex scheme S of G holds $1 \leq$ len S.
(106) For all finite graphs G, H and for every vertex scheme g of G such that $G={ }_{G} H$ holds g is a vertex scheme of H.
Let G be a finite graph, let S be a vertex scheme of G, and let x be a vertex of G. Then $x \leftrightarrow S$ is a non zero element of \mathbb{N}.

Let G be a finite graph, let S be a vertex scheme of G, and let n be a natural number. Then S.followSet (n) is a subset of the vertices of G.

Next we state the proposition
(107) Let G be a finite graph, S be a vertex scheme of G, and n be a non zero natural number. If $n \leq \operatorname{len} S$, then S.followSet (n) is non empty.

Let G be a finite graph and let S be a vertex scheme of G. We say that S is perfect if and only if the condition (Def. 13) is satisfied.
(Def. 13) Let n be a non zero natural number. Suppose $n \leq \operatorname{len} S$. Let G_{6} be a subgraph of G induced by S.followSet (n) and v be a vertex of G_{6}. If $v=S(n)$, then v is simplicial.
One can prove the following propositions:
(108) Let G be a finite trivial graph and v be a vertex of G. Then there exists a vertex scheme S of G such that $S=\langle v\rangle$ and S is perfect.
(109) Let G be a finite graph and V be a vertex scheme of G. Then V is perfect if and only if for all vertices a, b, c of G such that $b \neq c$ and a and b are adjacent and a and c are adjacent and for all natural numbers v_{5}, v_{6}, v_{7} such that $v_{5} \in \operatorname{dom} V$ and $v_{6} \in \operatorname{dom} V$ and $v_{7} \in \operatorname{dom} V$ and $V\left(v_{5}\right)=a$ and $V\left(v_{6}\right)=b$ and $V\left(v_{7}\right)=c$ and $v_{5}<v_{6}$ and $v_{5}<v_{7}$ holds b and c are adjacent.
Let G be a finite chordal graph. One can check that there exists a vertex scheme of G which is perfect.

The following propositions are true:
(110) Let G, H be finite chordal graphs and g be a perfect vertex scheme of G. If $G={ }_{G} H$, then g is a perfect vertex scheme of H.
(111) For every finite graph G such that there exists a vertex scheme of G which is perfect holds G is chordal.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[10] Gilbert Lee. Trees and Graph Components. Formalized Mathematics, 13(2):271-277, 2005.
[11] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253-269, 2005.
[12] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.
[13] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.
[14] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.
[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received August 18, 2006

[^0]: ${ }^{1}$ This work has been partially supported by the NSERC grant OGP 9207.

