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Summary. The first four sections of this article include some auxiliary

theorems related to number and finite sequence of numbers, in particular a pri-

mality test, the Pocklington’s theorem (see [19]). The last section presents the

formalization of Bertrand’s postulate closely following the book [1], pp. 7–9.
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The articles [26], [4], [24], [28], [3], [2], [20], [17], [14], [16], [30], [10], [11], [6],

[23], [13], [15], [5], [21], [8], [22], [27], [18], [29], [9], [7], [12], [25], and [31] provide

the notation and terminology for this paper.

1. Some Theorems on Real and Natural Numbers

The following propositions are true:

(1) For all real numbers r, s such that 0 ≤ r and s · s < r · r holds s < r.

(2) For all real numbers r, s such that 1 < r and r · r ≤ s holds r < s.

(3) For all natural numbers a, n such that a > 1 holds an > n.

(4) For all natural numbers n, k, m such that k ≤ n and m = ⌊ n
2 ⌋ holds

(

n
m

)

≥
(

n
k

)

.

(5) For all natural numbers n, m such that m = ⌊ n
2 ⌋ and n ≥ 2 holds

(

n
m

)

≥ 2n

n
.

(6) For every natural number n holds
(2·n

n

)

≥ 4n

2·n .

(7) For all natural numbers n, p such that p > 0 and n | p and n 6= 1 and

n 6= p holds 1 < n and n < p.
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(8) Let p be a natural number. Given a natural number n such that n | p

and 1 < n and n < p. Then there exists a natural number n such that

n | p and 1 < n and n · n ≤ p.

(9) For all natural numbers i, j, k, l such that i = j · k + l and l < j and

0 < l holds j ∤ i.

(10) For all natural numbers n, q, b such that gcd(q, b) = 1 and q 6= 0 and

b 6= 0 holds gcd(qn, b) = 1.

(11) For all natural numbers a, b, c holds a2·b mod c = (ab mod c) · (ab mod

c) mod c.

(12) Let p be a natural number. Then p is not prime if and only if one of the

following conditions is satisfied:

(i) p ≤ 1, or

(ii) there exists a natural number n such that n | p and 1 < n and n < p.

(13) Let n, k be natural numbers. Suppose n | k and 1 < n. Then there exists

a natural number p such that p | k and p ≤ n and p is prime.

(14) Let p be a natural number. Then p is prime if and only if the following

conditions are satisfied:

(i) p > 1, and

(ii) for every natural number n such that 1 < n and n · n ≤ p and n is

prime holds n ∤ p.

(15) For all natural numbers a, p, k such that ak mod p = 1 and k ≥ 1 and p

is prime holds a and p are relative prime.

(16) Let p be a prime number, a be a natural number, and x be a set. Suppose

a 6= 0 and x = pp -count(a). Then there exists a natural number b such that

b = x and 1 ≤ b and b ≤ a.

(17) For all natural numbers k, q, n, d such that q is prime and d | k · qn+1

and d ∤ k · qn holds qn+1 | d.

(18) For all natural numbers q1, q, n1 such that q1 | qn1 and q is prime and

q1 is prime and n1 > 0 holds q = q1.

(19) For every prime number p and for every natural number n such that

n < p holds p ∤ n!.

(20) Let a, b be non empty natural numbers. Suppose that for every natural

number p such that p is prime holds p -count(a) ≤ p -count(b). Then there

exists a natural number c such that b = a · c.

(21) Let a, b be non empty natural numbers. Suppose that for every natural

number p such that p is prime holds p -count(a) = p -count(b). Then a = b.

(22) For all prime numbers p1, p2 and for every non empty natural number m

such that p1
p1 -count(m) = p2

p2 -count(m) and p1 -count(m) > 0 holds p1 = p2.
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2. Pocklington’s Theorem

One can prove the following propositions:

(23) Let n, k, q, p, n1, p, a be natural numbers. Suppose n− 1 = k · qn1 and

k > 0 and n1 > 0 and q is prime and an−′1 mod n = 1 and p is prime and

p | n. Then p | a(n−′1)÷q −′ 1 or p mod qn1 = 1.

(24) Let n, f , c be natural numbers. Suppose that

(i) n − 1 = f · c,

(ii) f > c,

(iii) c > 0,

(iv) gcd(f, c) = 1, and

(v) for every natural number q such that q | f and q is prime there exists a

natural number a such that an−′1modn = 1 and gcd(a(n−′1)÷q−′1, n) = 1.

Then n is prime.

(25) Let n, f , d, n1, a, q be natural numbers. Suppose n − 1 = qn1 · d and

qn1 > d and d > 0 and gcd(q, d) = 1 and q is prime and an−′1 mod n = 1

and gcd(a(n−′1)÷q −′ 1, n) = 1. Then n is prime.

3. Some Prime Numbers

The following propositions are true:

(26) 7 is prime.

(27) 11 is prime.

(28) 13 is prime.

(29) 19 is prime.

(30) 23 is prime.

(31) 37 is prime.

(32) 43 is prime.

(33) 83 is prime.

(34) 139 is prime.

(35) 163 is prime.

(36) 317 is prime.

(37) 631 is prime.

(38) 1259 is prime.

(39) 2503 is prime.

(40) 4001 is prime.
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4. Some Theorems on Finite Sequence of Numbers

One can prove the following propositions:

(41) For all finite sequences f , f0, f1 of elements of R such that f = f0 + f1

holds dom f = dom f0 ∩ dom f1.

(42) Let F be a finite sequence of elements of R. If for every natural number

k such that k ∈ dom F holds F (k) > 0, then
∏

F > 0.

(43) For every set X1 and for every finite set X2 such that X1 ⊆ X2 and

X2 ⊆ N and ∅ /∈ X2 holds
∏

Sgm X1 ≤
∏

Sgm X2.

(44) Let a, k be natural numbers, X be a set, F be a finite sequence of

elements of Prime, and p be a prime number such that X ⊆ Prime and

X ⊆ Seg k and F = SgmX and a =
∏

F. Then

(i) if p ∈ rngF, then p -count(a) = 1, and

(ii) if p /∈ rngF, then p -count(a) = 0.

(45) For every natural number n holds
∏

Sgm{p; p ranges over prime num-

bers: p ≤ n + 1} ≤ 4n.

(46) For every real number x such that x ≥ 2 holds
∏

Sgm{p; p ranges over

prime numbers: p ≤ x} ≤ 4x−1.

(47) Let n be a natural number and p be a prime number. Suppose n 6= 0.

Then there exists a finite sequence f of elements of N such that

(i) len f = n,

(ii) for every natural number k such that k ∈ dom f holds f(k) = 1 iff

pk | n and f(k) = 0 iff pk ∤ n, and

(iii) p -count(n) =
∑

f.

(48) Let n be a natural number and p be a prime number. Then there exists a

finite sequence f of elements of N such that len f = n and for every natural

number k such that k ∈ dom f holds f(k) = ⌊ n
pk ⌋ and p -count(n!) =

∑

f.

(49) Let n be a natural number and p be a prime number. Then there exists

a finite sequence f of elements of R such that len f = 2 · n and for every

natural number k such that k ∈ dom f holds f(k) = ⌊ 2·n
pk ⌋ − 2 · ⌊ n

pk ⌋ and

p -count(
(2·n

n

)

) =
∑

f.

Let f be a finite sequence of elements of N and let p be a prime number.

The functor p -count(f) yielding a finite sequence of elements of N is defined by:

(Def. 1) len(p -count(f)) = len f and for every set i such that i ∈

dom(p -count(f)) holds (p -count(f))(i) = p -count(f(i)).

One can prove the following propositions:

(50) For every prime number p and for every finite sequence f of elements of

N such that f = ∅ holds p -count(f) = ∅.

(51) For every prime number p and for all finite sequences f1, f2 of elements

of N holds p -count(f1
a f2) = (p -count(f1))

a (p -count(f2)).
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(52) For every prime number p and for every non empty natural number n

holds p -count(〈n〉) = 〈p -count(n)〉.

(53) For every finite sequence f of elements of N and for every prime number

p such that
∏

f 6= 0 holds p -count(
∏

f) =
∑

(p -count(f)).

(54) Let f1, f2 be finite sequences of elements of R. Suppose len f1 = len f2

and for every natural number k such that k ∈ dom f1 holds f1(k) ≤ f2(k)

and f1(k) > 0. Then
∏

f1 ≤
∏

f2.

(55) For every natural number n and for every real number r such that r > 0

holds
∏

(n 7→ r) = rn.

In this article we present several logical schemes. The scheme scheme1 con-

cerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]}, then
∏

Sgm X > 0

for all values of the parameters.

The scheme scheme2 concerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]} and pp -count(m) /∈ X, then

p -count(
∏

Sgm X) = 0

for all values of the parameters.

The scheme scheme3 concerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]} and pp -count(m) ∈ X, then

p -count(
∏

Sgm X) = p -count(m)

for all values of the parameters.

The scheme scheme4 deals with a binary functor F yielding a set and a

binary predicate P, and states that:

Let n, m be natural numbers, r be a real number, and X be a

finite set. If X = {F(p,m); p ranges over prime numbers: p ≤
r ∧ P[p,m]} and r ≥ 0, then card X ≤ ⌊r⌋

for all values of the parameters.

5. Bertrand’s Postulate

The following proposition is true

(56) For every natural number n such that n ≥ 1 there exists a prime number

p such that n < p and p ≤ 2 · n.
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