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Summary. We introduce the notion of a permanent [13] of a square

matrix. It is a notion somewhat related to a determinant, so we follow closely the

approach and theorems already introduced in the Mizar Mathematical Library

for the determinant. Unfortunately, the formalization of the latter notion is at

its early stage, so we had to prove many very elementary auxiliary facts.

MML identifier: MATRIX 9, version: 7.6.01 4.53.937

The articles [18], [25], [14], [1], [16], [9], [26], [4], [6], [5], [2], [3], [15], [20], [21],

[12], [23], [17], [24], [7], [19], [10], [22], [8], [11], and [27] provide the terminology

and notation for this paper.

1. Preliminaries

In this paper i, n are natural numbers and K is a field.

We now state the proposition

(1) For all sets a, A such that a ∈ A holds {a} ∈ Fin A.

1This is a part of the author’s MSc thesis.
2This work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6

IST grant TYPES No. 510996.
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Let n be a natural number. Observe that there exists an element of Fin (the

permutations of n-element set) which is non empty.

The scheme NonEmptyFiniteX deals with a natural number A, a non empty

element B of Fin the permutations of A-element set, and a unary predicate P,

and states that:

P[B]

provided the following conditions are met:

• For every element x of the permutations of A-element set such

that x ∈ B holds P[{x}], and

• Let x be an element of the permutations of A-element set and B

be a non empty element of Fin (the permutations of A-element

set). If x ∈ B and B ⊆ B and x /∈ B and P[B], then P[B ∪ {x}].

Let us consider n. Observe that there exists a function from Seg n into Seg n

which is one-to-one and finite sequence-like.

Let us consider n. Observe that idSeg n is finite sequence-like.

One can prove the following two propositions:

(2) (Rev(idseq(2)))(1) = 2 and (Rev(idseq(2)))(2) = 1.

(3) For every one-to-one function f such that dom f = Seg 2 and rng f =

Seg 2 holds f = idSeg 2 or f = Rev(idSeg 2).

2. Permutations

One can prove the following propositions:

(4) Rev(idseq(n)) ∈ the permutations of n-element set.

(5) Let f be a finite sequence. Suppose n 6= 0 and f ∈ the permutations of

n-element set. Then Rev(f) ∈ the permutations of n-element set.

(6) The permutations of 2-element set = {idseq(2),Rev(idseq(2))}.

3. The Permanent of a Matrix

Let us consider n, K and let M be a matrix over K of dimension n. The

functor PPath M yielding a function from the permutations of n-element set

into the carrier of K is defined by:

(Def. 1) For every element p of the permutations of n-element set holds

(PPath M)(p) = (the multiplication of K) ⊛ (p -Path M).

Let us consider n, K and let M be a matrix over K of dimension n. The

functor Per M yielding an element of K is defined as follows:

(Def. 2) Per M = (the addition of K)-
∑

Ωf
the permutations of n-element set

PPath M.

In the sequel a, b, c, d denote elements of K.

The following propositions are true:



on the permanent of a matrix 15

(7) Per〈〈a〉〉 = a.

(8) For every field K and for every natural number n such that n ≥ 1 holds

Per(







0 . . . 0
...

. . .
...

0 . . . 0







n×n

K

) = 0K .

(9) For every element p of the permutations of 2-element set such that p =

idseq(2) holds p -Path

(

a b

c d

)

= 〈a, d〉.

(10) For every element p of the permutations of 2-element set such that p =

Rev(idseq(2)) holds p -Path

(

a b

c d

)

= 〈b, c〉.

(11) (The multiplication of K) ⊛ 〈a, b〉 = a · b.

4. Matrices with the Dimension 2 and 3

One can check that there exists a permutation of Seg 2 which is odd.

Let n be a natural number. Observe that there exists a permutation of Seg n

which is even.

One can prove the following four propositions:

(12) 〈2, 1〉 is an odd permutation of Seg 2.

(13) Det

(

a b

c d

)

= a · d − b · c.

(14) Per

(

a b

c d

)

= a · d + b · c.

(15) Rev(idseq(3)) = 〈3, 2, 1〉.

In the sequel D is a non empty set.

One can prove the following propositions:

(16) For all elements x, y, z of D and for every finite sequence f of elements

of D such that f = 〈x, y, z〉 holds Rev(f) = 〈z, y, x〉.

(17) Let f , g be finite sequences. Suppose f a g ∈ the permutations of n-

element set. Then f a Rev(g) ∈ the permutations of n-element set.

(18) Let f , g be finite sequences. Suppose f a g ∈ the permutations of n-

element set. Then g a f ∈ the permutations of n-element set.

(19) The permutations of 3-element set = {〈1, 2, 3〉, 〈3, 2, 1〉, 〈1, 3, 2〉, 〈2, 3,

1〉, 〈2, 1, 3〉, 〈3, 1, 2〉}.

(20) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈1, 2, 3〉, then p -Path M = 〈a,

e, i〉.
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(21) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈3, 2, 1〉, then p -Path M = 〈c,

e, g〉.

(22) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈1, 3, 2〉, then p -Path M = 〈a,

f, h〉.

(23) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈2, 3, 1〉, then p -Path M = 〈b,

f, g〉.

(24) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈2, 1, 3〉, then p -Path M = 〈b,

d, i〉.

(25) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K of

dimension 3. Suppose M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉. Let p be an element

of the permutations of 3-element set. If p = 〈3, 1, 2〉, then p -Path M = 〈c,

d, h〉.

(26) (The multiplication of K) ⊛ 〈a, b, c〉 = a · b · c.

(27)(i) 〈1, 3, 2〉 ∈ the permutations of 3-element set,

(ii) 〈2, 3, 1〉 ∈ the permutations of 3-element set,

(iii) 〈2, 1, 3〉 ∈ the permutations of 3-element set,

(iv) 〈3, 1, 2〉 ∈ the permutations of 3-element set,

(v) 〈1, 2, 3〉 ∈ the permutations of 3-element set, and

(vi) 〈3, 2, 1〉 ∈ the permutations of 3-element set.

(28) 〈2, 3, 1〉−1 = 〈3, 1, 2〉.

(29) For every element a of A3 such that a = 〈2, 3, 1〉 holds a−1 = 〈3, 1, 2〉.

5. Transpositions

The following propositions are true:

(30) For every permutation p of Seg 3 such that p = 〈1, 3, 2〉 holds p is a

transposition.

(31) For every permutation p of Seg 3 such that p = 〈2, 1, 3〉 holds p is a

transposition.

(32) For every permutation p of Seg 3 such that p = 〈3, 2, 1〉 holds p is a

transposition.
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(33) For every permutation p of Seg n such that p = idSeg n holds p is not a

transposition.

(34) For every permutation p of Seg 3 such that p = 〈3, 1, 2〉 holds p is not a

transposition.

(35) For every permutation p of Seg 3 such that p = 〈2, 3, 1〉 holds p is not a

transposition.

6. Even and Odd Permutations

One can prove the following propositions:

(36) Every permutation of Seg n is a finite sequence of elements of Seg n.

(37) 〈2, 1, 3〉 · 〈1, 3, 2〉 = 〈2, 3, 1〉 and 〈1, 3, 2〉 · 〈2, 1, 3〉 = 〈3, 1, 2〉 and 〈2, 1,

3〉 · 〈3, 2, 1〉 = 〈3, 1, 2〉 and 〈3, 2, 1〉 · 〈2, 1, 3〉 = 〈2, 3, 1〉 and 〈3, 2, 1〉 · 〈3, 2,

1〉 = 〈1, 2, 3〉 and 〈2, 1, 3〉 · 〈2, 1, 3〉 = 〈1, 2, 3〉 and 〈1, 3, 2〉 · 〈1, 3, 2〉 = 〈1, 2,

3〉 and 〈1, 3, 2〉 · 〈2, 3, 1〉 = 〈3, 2, 1〉 and 〈2, 3, 1〉 · 〈2, 3, 1〉 = 〈3, 1, 2〉 and 〈2,

3, 1〉 · 〈3, 1, 2〉 = 〈1, 2, 3〉 and 〈3, 1, 2〉 · 〈2, 3, 1〉 = 〈1, 2, 3〉 and 〈3, 1, 2〉 · 〈3, 1,

2〉 = 〈2, 3, 1〉 and 〈1, 3, 2〉 · 〈3, 2, 1〉 = 〈2, 3, 1〉 and 〈3, 2, 1〉 · 〈1, 3, 2〉 = 〈3, 1,

2〉.

(38) For every permutation p of Seg 3 such that p is a transposition holds

p = 〈2, 1, 3〉 or p = 〈1, 3, 2〉 or p = 〈3, 2, 1〉.

(39) For all elements f , g of the permutations of n-element set holds f ·g ∈ the

permutations of n-element set.

(40) Let l be a finite sequence of elements of An. Suppose that

(i) len l mod 2 = 0, and

(ii) for every natural number i such that i ∈ dom l there exists an element

q of the permutations of n-element set such that l(i) = q and q is a

transposition.

Then
∏

l is an even permutation of Seg n.

(41) Let l be a finite sequence of elements of A3. Suppose that

(i) len l mod 2 = 0, and

(ii) for every natural number i such that i ∈ dom l there exists an element

q of the permutations of 3-element set such that l(i) = q and q is a

transposition.

Then
∏

l = 〈1, 2, 3〉 or
∏

l = 〈2, 3, 1〉 or
∏

l = 〈3, 1, 2〉.

Let us mention that there exists a permutation of Seg 3 which is odd.

We now state four propositions:

(42) 〈3, 2, 1〉 is an odd permutation of Seg 3.

(43) 〈2, 1, 3〉 is an odd permutation of Seg 3.

(44) 〈1, 3, 2〉 is an odd permutation of Seg 3.
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(45) For every odd permutation p of Seg 3 holds p = 〈3, 2, 1〉 or p = 〈1, 3, 2〉

or p = 〈2, 1, 3〉.

7. Determinant and Permanent

One can prove the following propositions:

(46) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K

of dimension 3. If M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉, then Det M = (((a · e ·

i − c · e · g − a · f · h) + b · f · g) − b · d · i) + c · d · h.

(47) Let a, b, c, d, e, f , g, h, i be elements of K and M be a matrix over K

of dimension 3. If M = 〈〈a, b, c〉, 〈d, e, f〉, 〈g, h, i〉〉, then Per M = a · e · i +

c · e · g + a · f · h + b · f · g + b · d · i + c · d · h.

(48) Let i, n be natural numbers and p be an element of the permutations

of n-element set. If i ∈ Seg n, then there exists a natural number k such

that k ∈ Seg n and i = p(k).

(49) Let M be a matrix over K of dimension n. Given a natural number

i such that i ∈ Seg n and for every natural number k such that k ∈

Seg n holds M�,i(k) = 0K . Let p be an element of the permutations of

n-element set. Then there exists a natural number l such that l ∈ Seg n

and (p -Path M)(l) = 0K .

(50) Let p be an element of the permutations of n-element set and M be

a matrix over K of dimension n. Given a natural number i such that

i ∈ Seg n and for every natural number k such that k ∈ Seg n holds

M�,i(k) = 0K . Then (the product on paths of M)(p) = 0K .

(51) Let M be a matrix over K of dimension n. Given a natural number i such

that i ∈ Seg n and for every natural number k such that k ∈ Seg n holds

M�,i(k) = 0K . Then (the addition of K)-
∑

Ωf
the permutations of n-element set

(the

product on paths of M) = 0K .

(52) Let p be an element of the permutations of n-element set and M be

a matrix over K of dimension n. Given a natural number i such that

i ∈ Seg n and for every natural number k such that k ∈ Seg n holds

M�,i(k) = 0K . Then (PPath M)(p) = 0K .

(53) Let M be a matrix over K of dimension n. Given a natural number i

such that i ∈ Seg n and for every natural number k such that k ∈ Seg n

holds M�,i(k) = 0K . Then Det M = 0K .

(54) Let M be a matrix over K of dimension n. Given a natural number i

such that i ∈ Seg n and for every natural number k such that k ∈ Seg n

holds M�,i(k) = 0K . Then Per M = 0K .
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8. On the Paths of Matrices

One can prove the following two propositions:

(55) Let M , N be matrices over K of dimension n. Suppose i ∈ Seg n. Let

p be an element of the permutations of n-element set. Then there exists

a natural number k such that k ∈ Seg n and i = p(k) and (N�,i)k =

(p -Path N)k.

(56) Let a be an element of K and M , N be matrices over K of dimension

n. Given a natural number i such that

(i) i ∈ Seg n,

(ii) for every natural number k such that k ∈ Seg n holds M�,i(k) = a ·

(N�,i)k, and

(iii) for every natural number l such that l 6= i and l ∈ Seg n holds M�,l =

N�,l.

Let p be an element of the permutations of n-element set. Then there exists

a natural number l such that l ∈ Seg n and (p -Path M)l = a ·(p -Path N)l.
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[3] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.
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