Some Properties of Some Special Matrices. Part II

Xiaopeng Yue Qingdao University of Science and Technology China Dahai Hu Qingdao University of Science and Technology China

Xiquan Liang Qingdao University of Science and Technology China

Summary. This article provides definitions of idempotent, nilpotent, involutory, self-reversible, similar, and congruent matrices, the trace of a matrix and their main properties.

MML identifier: MATRIX_8, version: 7.6.01 4.53.937

The terminology and notation used here are introduced in the following articles: [7], [3], [1], [9], [8], [6], [4], [2], [5], [11], and [10].

We adopt the following convention: n is a natural number, K is a field, and $M_1, M_2, M_3, M_4, M_5, M_6$ are matrices over K of dimension n.

Let n be a natural number, let K be a field, and let M_1 be a matrix over K of dimension n. We say that M_1 is idempotent if and only if:

(Def. 1) $M_1 \cdot M_1 = M_1$.

We say that M_1 is 2-nilpotent if and only if:

(Def. 2)
$$M_1 \cdot M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$$
.

We say that M_1 is involutory if and only if:

C 2006 University of Białystok ISSN 1426-2630

(Def. 3)
$$M_1 \cdot M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times r}$$

We say that M_1 is self invertible if and only if:

(Def. 4) M_1 is invertible and $M_1 = M_1$.

We now state a number of propositions:

- (1) $\begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{K}^{n \times n}$ is idempotent and involutory. (2) If n > 0, then $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_{K}^{n \times n}$ is idempotent and 2-nilpotent.
- (3) If n > 0 and $M_2 = M_1^{\mathrm{T}}$, then M_1 is idempotent iff M_2 is idempotent.
- (4) If M_1 is involutory, then M_1 is invertible.
- (5) If M_1 is idempotent and M_2 is idempotent and M_1 is permutable with M_2 , then $M_1 \cdot M_1$ is permutable with $M_2 \cdot M_2$.
- (6) If n > 0 and M_1 is idempotent and M_2 is idempotent and M_1 is permutable with M_2 and $M_1 \cdot M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$, then $M_1 + M_2$ is idempotent.
- (7) If n > 0 and M_1 is idempotent and M_2 is idempotent and $M_1 \cdot M_2 = -M_2 \cdot M_1$, then $M_1 + M_2$ is idempotent.
- (8) If M_1 is idempotent and M_2 is invertible, then $M_2 \\ \sim \\ \cdot \\ M_1 \\ \cdot \\ M_2$ is idempotent.
- (9) If n > 0 and M_1 is invertible and idempotent, then $M_1 \stackrel{\sim}{}$ is idempotent.
- (10) If M_1 is invertible and idempotent, then $M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_K^{K}$.
- (11) If M_1 is idempotent and M_2 is idempotent and M_1 is permutable with M_2 , then $M_1 \cdot M_2$ is idempotent.
- (12) If n > 0 and M_1 is idempotent and M_2 is idempotent and M_1 is permutable with M_2 and $M_3 = M_1^{T} \cdot M_2^{T}$, then M_3 is idempotent.
- (13) If M_1 is idempotent and M_2 is idempotent and M_1 is invertible, then $M_1 \cdot M_2$ is idempotent.
- (14) If n > 0 and M_1 is idempotent and orthogonal, then M_1 is symmetrical.

(15) If
$$M_1$$
 is idempotent and M_2 is idempotent and $M_2 \cdot M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_K^{n \times n}$, then $M_1 \cdot M_2$ is idempotent.

(16) If M_1 is idempotent and orthogonal, then $M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}_K^{n \times n}$.

- (17) If n > 0 and M_1 is symmetrical and $M_2 = M_1^{\mathrm{T}}$, then $M_1 \cdot M_2$ is symmetrical.
- (18) If n > 0 and M_1 is symmetrical and $M_2 = M_1^{\mathrm{T}}$, then $M_2 \cdot M_1$ is symmetrical.
- (19) If M_1 is invertible and $M_1 \cdot M_2 = M_1 \cdot M_3$, then $M_2 = M_3$.
- (20) If M_1 is invertible and $M_2 \cdot M_1 = M_3 \cdot M_1$, then $M_2 = M_3$.

(21) If n > 0 and M_1 is invertible and $M_2 \cdot M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$, then

$$M_2 = \left(\begin{array}{ccc} 0 & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & 0\end{array}\right)_K^{n \times n}.$$

(22) If n > 0 and M_1 is invertible and $M_2 \cdot M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$, then

$$M_2 = \left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array}\right)_K \quad .$$

- (23) If M_1 is 2-nilpotent and permutable with M_2 and n > 0, then $M_1 \cdot M_2$ is 2-nilpotent.
- (24) If n > 0 and M_1 is 2-nilpotent and M_2 is 2-nilpotent and M_1 is permutable with M_2 and $M_1 \cdot M_2 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$, then $M_1 + M_2$ is

2-nilpotent.

- (25) If M_1 is 2-nilpotent and M_2 is 2-nilpotent and $M_1 \cdot M_2 = -M_2 \cdot M_1$ and n > 0, then $M_1 + M_2$ is 2-nilpotent.
- (26) If M_1 is 2-nilpotent and $M_2 = M_1^T$ and n > 0, then M_2 is 2-nilpotent.

(27) If M_1 is 2-nilpotent and idempotent, then $M_1 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n}$. (28) If n > 0, then $\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}_K^{n \times n} \neq \begin{pmatrix} 1 & 0 \\ \ddots & 1 \\ 0 & 1 \end{pmatrix}_K^{n \times n}$. (29) If n > 0 and M_1 is 2-nilpotent, then M_1 is not invertible. (30) If M_1 is self invertible, then M_1 is involutory. (31) $\begin{pmatrix} 1 & 0 \\ \ddots & 1 \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ is self invertible.

(32) If M_1 is self invertible and idempotent, then $M_1 = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{-1}$.

(33) If M_1 is self invertible and symmetrical, then M_1 is orthogonal.

Let n be a natural number, let K be a field, and let M_1 , M_2 be matrices over K of dimension n. We say that M_1 is similar to M_2 if and only if:

- (Def. 5) There exists a matrix M over K of dimension n such that M is invertible and $M_1 = M \stackrel{\sim}{\cdot} M_2 \cdot M$.
 - Let us notice that the predicate M_1 is similar to M_2 is reflexive and symmetric. The following propositions are true:
 - (34) If M_1 is similar to M_2 and M_2 is similar to M_3 and n > 0, then M_1 is similar to M_3 .
 - (35) If M_1 is similar to M_2 and M_2 is idempotent, then M_1 is idempotent.
 - (36) If M_1 is similar to M_2 and M_2 is 2-nilpotent and n > 0, then M_1 is 2-nilpotent.
 - (37) If M_1 is similar to M_2 and M_2 is involutory, then M_1 is involutory.

(38) If
$$M_1$$
 is similar to M_2 and $n > 0$, then $M_1 + \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$ is similar
to $M_2 + \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_K^{n \times n}$.

(39) If M_1 is similar to M_2 and n > 0, then $M_1 + M_1$ is similar to $M_2 + M_2$.

(40) If M_1 is similar to M_2 and n > 0, then $M_1 + M_1 + M_1$ is similar to $M_2 + M_2 + M_2$.

- (41) If M_1 is invertible, then $M_2 \cdot M_1$ is similar to $M_1 \cdot M_2$.
- (42) If M_2 is invertible and M_1 is similar to M_2 and n > 0, then M_1 is invertible.
- (43) If M_2 is invertible and M_1 is similar to M_2 and n > 0, then M_1^{\sim} is similar to M_2 .

Let n be a natural number, let K be a field, and let M_1 , M_2 be matrices over K of dimension n. We say that M_1 is congruent to M_2 if and only if:

(Def. 6) There exists a matrix M over K of dimension n such that M is invertible and $M_1 = M^{\mathrm{T}} \cdot M_2 \cdot M$.

Next we state several propositions:

- (44) If n > 0, then M_1 is congruent to M_1 .
- (45) If M_1 is congruent to M_2 and n > 0, then M_2 is congruent to M_1 .
- (46) If M_1 is congruent to M_2 and M_2 is congruent to M_3 and n > 0, then M_1 is congruent to M_3 .
- (47) If M_1 is congruent to M_2 and n > 0, then $M_1 + M_1$ is congruent to $M_2 + M_2$
- (48) If M_1 is congruent to M_2 and n > 0, then $M_1 + M_1 + M_1$ is congruent to $M_2 + M_2 + M_2$.
- (49) If M_1 is orthogonal, then $M_2 \cdot M_1$ is congruent to $M_1 \cdot M_2$.
- (50) If M_2 is invertible and M_1 is congruent to M_2 and n > 0, then M_1 is invertible.
- (51) If M_2 is invertible and M_1 is congruent to M_2 and n > 0 and $M_5 = M_1^{\mathrm{T}}$ and $M_6 = M_2^{\mathrm{T}}$, then M_5 is congruent to M_6 .
- (52) If M_4 is orthogonal and $M_1 = M_4^{\mathrm{T}} \cdot M_2 \cdot M_4$, then M_1 is similar to M_2 . Let n be a natural number, let K be a field, and let M be a matrix over Kof dimension n. The functor Trace(M) yields an element of K and is defined by:
- (Def. 7) Trace(M) = \sum (the diagonal of M).

The following propositions are true:

- (53) If $M_2 = M_1^{T}$, then $\text{Trace}(M_1) = \text{Trace}(M_2)$.
- (54) $\operatorname{Trace}(M_1 + M_2) = \operatorname{Trace}(M_1) + \operatorname{Trace}(M_2).$
- $\operatorname{Trace}(M_1 + M_2 + M_3) = \operatorname{Trace}(M_1) + \operatorname{Trace}(M_2) + \operatorname{Trace}(M_3).$ (55) $\operatorname{Trace}\left(\left(\begin{array}{ccc} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{array} \right)_{K}^{n \times n} \right) = 0_{K}.$ (56)

$$\int 0 \dots 0$$

- (57) If n > 0, then $\operatorname{Trace}(-M_1) = -\operatorname{Trace}(M_1)$.
- (58) If n > 0, then $-\operatorname{Trace}(-M_1) = \operatorname{Trace}(M_1)$.
- (59) If n > 0, then $\operatorname{Trace}(M_1 + -M_1) = 0_K$.

XIAOPENG YUE AND DAHAI HU AND XIQUAN LIANG

- (60) If n > 0, then $\operatorname{Trace}(M_1 M_2) = \operatorname{Trace}(M_1) \operatorname{Trace}(M_2)$.
- (61) If n > 0, then $\operatorname{Trace}((M_1 M_2) + M_3) = (\operatorname{Trace}(M_1) \operatorname{Trace}(M_2)) + \operatorname{Trace}(M_3)$.
- (62) If n > 0, then $\operatorname{Trace}((M_1 + M_2) M_3) = (\operatorname{Trace}(M_1) + \operatorname{Trace}(M_2)) \operatorname{Trace}(M_3)$.
- (63) If n > 0, then $\operatorname{Trace}(M_1 M_2 M_3) = \operatorname{Trace}(M_1) \operatorname{Trace}(M_2) \operatorname{Trace}(M_3)$.

References

- Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
- [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–65, 1990.
 [3] C. L. D. Li (1): C. L. L. Li (1):47, 52.
- [3] Czesław Byliński. Some basic properties of sets. *Formalized Mathematics*, 1(1):47–53, 1990.
- [4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475–480, 1991.
- [5] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711–717, 1991.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291– 296, 1990.
- [10] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541–547, 2005.
- [11] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1–8, 1993.

Received January 4, 2006