Niemytzki Plane - an Example of Tychonoff Space Which Is Not T_{4}

Grzegorz Bancerek
Department of Theoretical Computer Science
Białystok Technical University
Poland

Summary. We continue Mizar formalization of General Topology according to the book [20] by Engelking. Niemytzki plane is defined as halfplane $y \geq 0$ with topology introduced by a neighborhood system. Niemytzki plane is not T_{4}. Next, the definition of Tychonoff space is given. The characterization of Tychonoff space by prebasis and the fact that Tychonoff spaces are between T_{3} and T_{4} is proved. The final result is that Niemytzki plane is also a Tychonoff space.

MML identifier: TOPGEN_5, version: 7.6.01 4.46.926

The notation and terminology used here are introduced in the following papers: [38], [34], [15], [41], [17], [40], [35], [42], [11], [14], [12], [8], [13], [33], [10], [37], [4], [2], [1], [3], [5], [32], [39], [22], [25], [23], [29], [27], [26], [28], [43], [18], [31], [30], [36], [19], [24], [9], [16], [21], [7], and [6].

1. Preliminaries

In this paper x, y are elements of \mathbb{R}.
One can prove the following propositions:
(1) For all functions f, g such that $f \approx g$ and for every set A holds $(f+\cdot g)^{-1}(A)=f^{-1}(A) \cup g^{-1}(A)$.
(2) For all functions f, g such that $\operatorname{dom} f$ misses $\operatorname{dom} g$ and for every set A holds $(f+\cdot g)^{-1}(A)=f^{-1}(A) \cup g^{-1}(A)$.

Let X be a set and let Y be a non empty real-membered set. Note that every relation between X and Y is real-yielding.

Next we state several propositions:
(3) For all sets x, a and for every function f such that $a \in \operatorname{dom} f$ holds (commute $(x \longmapsto f))(a)=x \longmapsto f(a)$.
(4) Let b be a set and f be a function. Then $b \in \operatorname{dom} \operatorname{commute}(f)$ if and only if there exists a set a and there exists a function g such that $a \in \operatorname{dom} f$ and $g=f(a)$ and $b \in \operatorname{dom} g$.
(5) Let a, b be sets and f be a function. Then $a \in \operatorname{dom}(\operatorname{commute}(f))(b)$ if and only if there exists a function g such that $a \in \operatorname{dom} f$ and $g=f(a)$ and $b \in \operatorname{dom} g$.
(6) For all sets a, b and for all functions f, g such that $a \in \operatorname{dom} f$ and $g=f(a)$ and $b \in \operatorname{dom} g$ holds (commute $(f))(b)(a)=g(b)$.
(7) For every set a and for all functions f, g, h such that $h=f \cup g$ holds $(\operatorname{commute}(h))(a)=(\operatorname{commute}(f))(a) \cup(\operatorname{commute}(g))(a)$.
Let us note that every finite subset of \mathbb{R} is bounded.
The following propositions are true:
(8) For all real numbers a, b, c, d such that $a<b$ and $c \leq d$ holds $] a, c[\cap$ $[b, d]=[b, c[$.
(9) For all real numbers a, b, c, d such that $a \geq b$ and $c>d$ holds $] a, c[\cap$ $[b, d]=] a, d]$.
(10) For all real numbers a, b, c, d such that $a \leq b$ and $b<c$ and $c \leq d$ holds $[a, c[\cup] b, d]=[a, d]$.
(11) For all real numbers a, b, c, d such that $a \leq b$ and $b<c$ and $c \leq d$ holds $[a, c[\cap] b, d]=] b, c[$.
(12) For all sets X, Y holds $\Pi\langle X, Y\rangle \approx: X, Y:]$ and $\overline{\overline{\prod\langle X, Y\rangle}}=\overline{\bar{X}} \cdot \overline{\bar{Y}}$.

In this article we present several logical schemes. The scheme SCH 1 deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, two unary functors \mathcal{F} and \mathcal{G} yielding sets, and a unary predicate \mathcal{P}, and states that:

There exists a function f from \mathcal{C} into \mathcal{B} such that for every element a of \mathcal{A} holds
(i) if $\mathcal{P}[a]$, then $f(a)=\mathcal{F}(a)$, and
(ii) if not $\mathcal{P}[a]$, then $f(a)=\mathcal{G}(a)$
provided the parameters meet the following conditions:

- $\mathcal{C} \subseteq \mathcal{A}$, and
- For every element a of \mathcal{A} such that $a \in \mathcal{C}$ holds if $\mathcal{P}[a]$, then $\mathcal{F}(a) \in \mathcal{B}$ and if not $\mathcal{P}[a]$, then $\mathcal{G}(a) \in \mathcal{B}$.
The scheme $S C H 2$ deals with non empty sets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, three unary functors \mathcal{F}, \mathcal{G}, and \mathcal{H} yielding sets, and two unary predicates \mathcal{P}, \mathcal{Q}, and states that:

There exists a function f from \mathcal{C} into \mathcal{B} such that for every element a of \mathcal{A} holds
(i) if $\mathcal{P}[a]$, then $f(a)=\mathcal{F}(a)$,
(ii) if not $\mathcal{P}[a]$ and $\mathcal{Q}[a]$, then $f(a)=\mathcal{G}(a)$, and
(iii) if not $\mathcal{P}[a]$ and not $\mathcal{Q}[a]$, then $f(a)=\mathcal{H}(a)$
provided the parameters meet the following conditions:

- $\mathcal{C} \subseteq \mathcal{A}$, and
- For every element a of \mathcal{A} such that $a \in \mathcal{C}$ holds if $\mathcal{P}[a]$, then $\mathcal{F}(a) \in \mathcal{B}$ and if not $\mathcal{P}[a]$ and $\mathcal{Q}[a]$, then $\mathcal{G}(a) \in \mathcal{B}$ and if not $\mathcal{P}[a]$ and not $\mathcal{Q}[a]$, then $\mathcal{H}(a) \in \mathcal{B}$.
The following four propositions are true:
(13) For all real numbers a, b holds $|[a, b]|^{2}=a^{2}+b^{2}$.
(14) Let X be a topological space, Y be a non empty topological space, A, B be closed subsets of X, f be a continuous function from $X \upharpoonright A$ into Y, and g be a continuous function from $X \upharpoonright B$ into Y. If $f \approx g$, then $f+g$ is a continuous function from $X \upharpoonright(A \cup B)$ into Y.
(15) Let X be a topological space, Y be a non empty topological space, and A, B be closed subsets of X. Suppose A misses B. Let f be a continuous function from $X \upharpoonright A$ into Y and g be a continuous function from $X \upharpoonright B$ into Y. Then $f+\cdot g$ is a continuous function from $X \upharpoonright(A \cup B)$ into Y.
(16) Let X be a topological space, Y be a non empty topological space, A be an open closed subset of X, f be a continuous function from $X \upharpoonright A$ into Y, and g be a continuous function from $X \upharpoonright A^{\mathrm{c}}$ into Y. Then $f+\cdot g$ is a continuous function from X into Y.

2. Niemytzki Plane

One can prove the following proposition
(17) For every natural number n and for every point a of $\mathcal{E}_{\mathrm{T}}^{n}$ and for every positive real number r holds $a \in \operatorname{Ball}(a, r)$.
The subset $(y=0)$-line of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined by:
$($ Def. 1) $\quad(y=0)$-line $=\{[x, 0]\}$.
The subset $(y \geq 0)$-plane of $\mathcal{E}_{\mathrm{T}}^{2}$ is defined as follows:
(Def. 2) $\quad(y \geq 0)$-plane $=\{[x, y]: y \geq 0\}$.
We now state several propositions:
(18) For all sets a, b holds $\langle a, b\rangle \in(y=0)$-line iff $a \in \mathbb{R}$ and $b=0$.
(19) For all real numbers a, b holds $[a, b] \in(y=0)$-line iff $b=0$.
(20) $\overline{\overline{(y=0)-l i n e}}=\mathfrak{c}$.
(21) For all sets a, b holds $\langle a, b\rangle \in(y \geq 0)$-plane iff $a \in \mathbb{R}$ and there exists y such that $b=y$ and $y \geq 0$.
(22) For all real numbers a, b holds $[a, b] \in(y \geq 0)$-plane iff $b \geq 0$.

Let us note that $(y=0)$-line is non empty and ($y \geq 0$)-plane is non empty. We now state several propositions:
(23) $\quad(y=0)$-line $\subseteq(y \geq 0)$-plane.
(24) For all real numbers a, b, r such that $r>0$ holds $\operatorname{Ball}([a, b], r) \subseteq(y \geq$ $0)$-plane iff $r \leq b$.
(25) For all real numbers a, b, r such that $r>0$ and $b \geq 0$ holds Ball($[a, b], r)$ misses $(y=0)$-line iff $r \leq b$.
(26) Let n be a natural number, a, b be elements of $\mathcal{E}_{\mathrm{T}}^{n}$, and r_{1}, r_{2} be positive real numbers. If $|a-b| \leq r_{1}-r_{2}$, then $\operatorname{Ball}\left(b, r_{2}\right) \subseteq \operatorname{Ball}\left(a, r_{1}\right)$.
(27) For every real number a and for all positive real numbers r_{1}, r_{2} such that $r_{1} \leq r_{2}$ holds $\operatorname{Ball}\left(\left[a, r_{1}\right], r_{1}\right) \subseteq \operatorname{Ball}\left(\left[a, r_{2}\right], r_{2}\right)$.
(28) Let T_{1}, T_{2} be non empty topological spaces, B_{1} be a neighborhood system of T_{1}, and B_{2} be a neighborhood system of T_{2}. Suppose $B_{1}=B_{2}$. Then the topological structure of $T_{1}=$ the topological structure of T_{2}.
In the sequel r is an element of \mathbb{R}.
Niemytzki plane is a strict non empty topological space and is defined by the conditions (Def. 3).
(Def. 3)(i) The carrier of Niemytzki plane $=(y \geq 0)$-plane, and
(ii) there exists a neighborhood system B of Niemytzki plane such that for every x holds $B([x, 0])=\{\operatorname{Ball}([x, r], r) \cup\{[x, 0]\}: r>0\}$ and for all x, y such that $y>0$ holds $B([x, y])=\{\operatorname{Ball}([x, y], r) \cap(y \geq 0)$-plane $: r>0\}$.
The following propositions are true:
(29) $\quad(y \geq 0)$-plane $\backslash(y=0)$-line is an open subset of Niemytzki plane.
(30) $\quad(y=0)$-line is a closed subset of Niemytzki plane.
(31) Let x be a real number and r be a positive real number. Then $\operatorname{Ball}([x$, $r], r) \cup\{[x, 0]\}$ is an open subset of Niemytzki plane.
(32) Let x be a real number and y, r be positive real numbers. Then $\operatorname{Ball}([x$, $y], r) \cap(y \geq 0)$-plane is an open subset of Niemytzki plane.
(33) Let x, y be real numbers and r be a positive real number. If $r \leq y$, then $\operatorname{Ball}([x, y], r)$ is an open subset of Niemytzki plane.
(34) Let p be a point of Niemytzki plane and r be a positive real number. Then there exists a point a of $\mathcal{E}_{\mathrm{T}}^{2}$ and there exists an open subset U of Niemytzki plane such that $p \in U$ and $a \in U$ and for every point b of $\mathcal{E}_{\mathrm{T}}^{2}$ such that $b \in U$ holds $|b-a|<r$.
(35) Let x, y be real numbers and r be a positive real number. Then there exist rational numbers w, v such that $[w, v] \in \operatorname{Ball}([x, y], r)$ and $[w, v] \neq[x$,
$y]$.
(36) Let A be a subset of Niemytzki plane. If $A=((y \geq 0)$-plane $\backslash(y=$ $0)$-line) $\cap \prod\langle\mathbb{Q}, \mathbb{Q}\rangle$, then for every set x holds $\overline{A \backslash\{x\}}=\Omega_{\text {Niemytzki plane }}$.
(37) Let A be a subset of Niemytzki plane. If $A=(y \geq 0)$-plane $\backslash(y=0)$-line, then for every set x holds $\overline{A \backslash\{x\}}=\Omega_{\text {Niemytzki plane }}$.
(38) For every subset A of Niemytzki plane such that $A=(y \geq 0)$-plane $\backslash(y=$ 0)-line holds $\bar{A}=\Omega_{\text {Niemytzki plane }}$.
(39) For every subset A of Niemytzki plane such that $A=(y=0)$-line holds $\bar{A}=A$ and $\operatorname{Int} A=\emptyset$.
(40) $\quad((y \geq 0)$-plane $\backslash(y=0)$-line $) \cap \prod\langle\mathbb{Q}, \mathbb{Q}\rangle$ is a dense subset of Niemytzki plane.
(41) $\quad((y \geq 0)$-plane $\backslash(y=0)$-line $) \cap \prod\langle\mathbb{Q}, \mathbb{Q}\rangle$ is a dense-in-itself subset of Niemytzki plane.
(42) $(y \geq 0)$-plane $\backslash(y=0)$-line is a dense subset of Niemytzki plane.
(43) $(y \geq 0)$-plane $\backslash(y=0)$-line is a dense-in-itself subset of Niemytzki plane.
(44) $\quad(y=0)$-line is a nowhere dense subset of Niemytzki plane.
(45) For every subset A of Niemytzki plane such that $A=(y=0)$-line holds Der A is empty.
(46) Every subset of $(y=0)$-line is a closed subset of Niemytzki plane.
(47) \mathbb{Q} is a dense subset of Sorgenfrey line.
(48) Sorgenfrey line is separable.
(49) Niemytzki plane is separable.
(50) Niemytzki plane is a T_{1} space.
(51) Niemytzki plane is not T_{4}.

3. Tychonoff Spaces

Let T be a topological space. We say that T is Tychonoff if and only if the conditions (Def. 4) are satisfied.
(Def. 4)(i) $\quad T$ is a T_{1} space, and
(ii) for every closed subset A of T and for every point a of T such that $a \in A^{\text {c }}$ there exists a continuous function f from T into \mathbb{I} such that $f(a)=0$ and $f^{\circ} A \subseteq\{1\}$.
Let us observe that every topological space which is Tychonoff is also T_{1} and T_{3} and every non empty topological space which is T_{1} and T_{4} is also Tychonoff.

We now state the proposition
(52) Let X be a T_{1} topological space. Suppose X is Tychonoff. Let B be a prebasis of X, x be a point of X, and V be a subset of X. Suppose $x \in V$
and $V \in B$. Then there exists a continuous function f from X into \mathbb{I} such that $f(x)=0$ and $f^{\circ} V^{\mathrm{c}} \subseteq\{1\}$.
Let X be a set and let Y be a non empty real-membered set. Observe that every relation between X and Y is real-yielding.

The following propositions are true:
(53) Let X be a topological space, R be a non empty subspace of $\mathbb{R}^{\mathbf{1}}, f, g$ be continuous functions from X into R, and A be a subset of X. Suppose that for every point x of X holds $x \in A$ iff $f(x) \leq g(x)$. Then A is closed.
(54) Let X be a topological space, R be a non empty subspace of \mathbb{R}^{1}, and f, g be continuous functions from X into R. Then there exists a continuous function h from X into R such that for every point x of X holds $h(x)=$ $\max (f(x), g(x))$.
(55) Let X be a non empty topological space, R be a non empty subspace of $\mathbb{R}^{\mathbf{1}}, A$ be a finite non empty set, and F be a many sorted function indexed by A. Suppose that for every set a such that $a \in A$ holds $F(a)$ is a continuous function from X into R. Then there exists a continuous function f from X into R such that for every point x of X and for every finite non empty subset S of \mathbb{R} if $S=\operatorname{rng}(\operatorname{commute}(F))(x)$, then $f(x)=$ $\max S$.
(56) Let X be a T_{1} non empty topological space and B be a prebasis of X. Suppose that for every point x of X and for every subset V of X such that $x \in V$ and $V \in B$ there exists a continuous function f from X into \mathbb{I} such that $f(x)=0$ and $f^{\circ} V^{\mathrm{c}} \subseteq\{1\}$. Then X is Tychonoff.
(57) Sorgenfrey line is a T_{1} space.
(58) For every real number x holds $]-\infty, x[$ is a closed subset of Sorgenfrey line.
(59) For every real number x holds $]-\infty, x]$ is a closed subset of Sorgenfrey line.
(60) For every real number x holds $[x,+\infty$ [is a closed subset of Sorgenfrey line.
(61) For all real numbers x, y holds $[x, y[$ is a closed subset of Sorgenfrey line.
(62) Let x be a real number and w be a rational number. Suppose $x<w$. Then there exists a continuous function f from Sorgenfrey line into \mathbb{I} such that for every point a of Sorgenfrey line holds
(i) if $a \in[x, w[$, then $f(a)=0$, and
(ii) if $a \notin[x, w[$, then $f(a)=1$.
(63) Sorgenfrey line is Tychonoff.

4. Niemytzki Plane is Tychonoff Space

Let x be a real number and let r be a positive real number. The functor $+(x, r)$ yielding a function from Niemytzki plane into \mathbb{I} is defined by the conditions (Def. 5).
$($ Def. 5$)(\mathrm{i}) \quad(+(x, r))([x, 0])=0$, and
(ii) for every real number a and for every non negative real number b holds if $a \neq x$ or $b \neq 0$ and if $[a, b] \notin \operatorname{Ball}([x, r], r)$, then $(+(x, r))([a, b])=1$ and if $[a, b] \in \operatorname{Ball}([x, r], r)$, then $(+(x, r))([a, b])=\frac{|[x, 0]-[a, b]|^{2}}{2 \cdot r \cdot b}$.
One can prove the following propositions:
(64) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2} \geq 0$. Let x be a real number and r be a positive real number. If $(+(x, r))(p)=0$, then $p=[x, 0]$.
(65) For all real numbers x, y and for every positive real number r such that $x \neq y$ holds $(+(x, r))([y, 0])=1$.
(66) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, x$ be a real number, and a, r be positive real numbers. If $a \leq 1$ and $|p-[x, r \cdot a]|=r \cdot a$ and $p_{\mathbf{2}} \neq 0$, then $(+(x, r))(p)=a$.
(67) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}, x, a$ be real numbers, and r be a positive real number. If $0 \leq a$ and $a \leq 1$ and $|p-[x, r \cdot a]|<r \cdot a$, then $(+(x, r))(p)<a$.
(68) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{\mathbf{2}} \geq 0$. Let x, a be real numbers and r be a positive real number. If $0 \leq a$ and $a<1$ and $|p-[x, r \cdot a]|>r \cdot a$, then $(+(x, r))(p)>a$.
(69) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2} \geq 0$. Let x, a, b be real numbers and r be a positive real number. Suppose $0 \leq a$ and $b \leq 1$ and $(+(x, r))(p) \in$ $] a, b\left[\right.$. Then there exists a positive real number r_{1} such that $r_{1} \leq p_{2}$ and $\operatorname{Ball}\left(p, r_{1}\right) \subseteq(+(x, r))^{-1}(] a, b[)$.
(70) For every real number x and for all positive real numbers a, r holds $\operatorname{Ball}([x, r \cdot a], r \cdot a) \subseteq(+(x, r))^{-1}(] 0, a[)$.
(71) For every real number x and for all positive real numbers a, r holds $\operatorname{Ball}([x, r \cdot a], r \cdot a) \cup\{[x, 0]\} \subseteq(+(x, r))^{-1}([0, a[)$.
(72) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2} \geq 0$. Let x, a be real numbers and r be a positive real number. If $0<(+(x, r))(p)$ and $(+(x, r))(p)<a$ and $a \leq 1$, then $p \in \operatorname{Ball}([x, r \cdot a], r \cdot a)$.
(73) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2}>0$. Let x, a be real numbers and r be a positive real number. Suppose $0 \leq a$ and $a<(+(x, r))(p)$. Then there exists a positive real number r_{1} such that $r_{1} \leq p_{2}$ and $\operatorname{Ball}\left(p, r_{1}\right) \subseteq$ $\left.\left.(+(x, r))^{-1}(] a, 1\right]\right)$.
(74) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{\mathbf{2}}=0$. Let x be a real number and r be a positive real number. Suppose $(+(x, r))(p)=1$. Then there exists a positive real number r_{1} such that $\operatorname{Ball}\left(\left[p_{1}, r_{1}\right], r_{1}\right) \cup\{p\} \subseteq(+(x, r))^{-1}(\{1\})$.
(75) Let T be a non empty topological space, S be a subspace of T, and B be a basis of T. Then $\left\{A \cap \Omega_{S} ; A\right.$ ranges over subsets of $T: A \in B \wedge A$ meets $\left.\Omega_{S}\right\}$ is a basis of S.
(76) $\quad] a, b[; a$ ranges over real numbers, b ranges over real numbers: $a<b\}$ is a basis of $\mathbb{R}^{\mathbf{1}}$.
(77) Let T be a topological space, U, V be subsets of T, and B be a set. If $U \in B$ and $V \in B$ and $B \cup\{U \cup V\}$ is a basis of T, then B is a basis of T.
(78) $\{[0, a[; a$ ranges over real numbers: $0<a \wedge a \leq 1\} \cup\{] a, 1] ; a$ ranges over real numbers: $0 \leq a \wedge a<1\} \cup] a, b[; a$ ranges over real numbers, b ranges over real numbers: $0 \leq a \wedge a<b \wedge b \leq 1\}$ is a basis of \mathbb{I}.
(79) Let T be a non empty topological space and f be a function from T into \mathbb{I}. Then f is continuous if and only if for all real numbers a, b such that $0 \leq a$ and $a<1$ and $0<b$ and $b \leq 1$ holds $f^{-1}([0, b[)$ is open and $\left.\left.f^{-1}(] a, 1\right]\right)$ is open.
Let x be a real number and let r be a positive real number. Note that $+(x, r)$ is continuous.

We now state the proposition
(80) Let U be a subset of Niemytzki plane and given x, r. Suppose $U=$ $\operatorname{Ball}([x, r], r) \cup\{[x, 0]\}$. Then there exists a continuous function f from Niemytzki plane into \mathbb{I} such that
(i) $\quad f([x, 0])=0$, and
(ii) for all real numbers a, b holds if $[a, b] \in U^{\mathrm{c}}$, then $f([a, b])=1$ and if $[a$, $b] \in U \backslash\{[x, 0]\}$, then $f([a, b])=\frac{|[x, 0]-[a, b]|^{2}}{2 \cdot r \cdot b}$.
Let x, y be real numbers and let r be a positive real number. The functor $+(x, y, r)$ yields a function from Niemytzki plane into \mathbb{I} and is defined by the condition (Def. 6).
(Def. 6) Let a be a real number and b be a non negative real number. Then
(i) if $[a, b] \notin \operatorname{Ball}([x, y], r)$, then $(+(x, y, r))([a, b])=1$, and
(ii) if $[a, b] \in \operatorname{Ball}([x, y], r)$, then $(+(x, y, r))([a, b])=\frac{|[x, y]-[a, b]|}{r}$.

The following propositions are true:
(81) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2} \geq 0$. Let x be a real number, y be a non negative real number, and r be a positive real number. Then $(+(x, y, r))(p)=0$ if and only if $p=[x, y]$.
(82) Let x be a real number, y be a non negative real number, and r, a be positive real numbers. If $a \leq 1$, then $(+(x, y, r))^{-1}([0, a[)=\operatorname{Ball}([x$, $y], r \cdot a) \cap(y \geq 0)$-plane.
(83) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2}>0$. Let x be a real number, a be a non negative real number, and y, r be positive real numbers. If $(+(x, y, r))(p)>a$, then $|[x, y]-p|>r \cdot a$ and $\operatorname{Ball}(p,|[x, y]-p|-r \cdot a) \cap(y \geq$ $0)$-plane $\left.\left.\subseteq(+(x, y, r))^{-1}(] a, 1\right]\right)$.
(84) Let p be a point of $\mathcal{E}_{\mathrm{T}}^{2}$. Suppose $p_{2}=0$. Let x be a real number, a be a non negative real number, and y, r be positive real numbers. Suppose $(+(x, y, r))(p)>a$. Then $|[x, y]-p|>r \cdot a$ and there exists a positive real number r_{1} such that $r_{1}=\frac{|[x, y]-p|-r \cdot a}{2}$ and $\operatorname{Ball}\left(\left[p_{1}, r_{1}\right], r_{1}\right) \cup\{p\} \subseteq$ $\left.\left.(+(x, y, r))^{-1}(] a, 1\right]\right)$.
Let x be a real number and let y, r be positive real numbers. One can verify that $+(x, y, r)$ is continuous.

We now state three propositions:
(85) Let U be a subset of Niemytzki plane and given x, y, r. Suppose $y>0$ and $U=\operatorname{Ball}([x, y], r) \cap(y \geq 0)$-plane. Then there exists a continuous function f from Niemytzki plane into \mathbb{I} such that $f([x, y])=0$ and for all real numbers a, b holds if $[a, b] \in U^{\mathrm{c}}$, then $f([a, b])=1$ and if $[a, b] \in U$, then $f([a, b])=\frac{|[x, y]-[a, b]|}{r}$.
(86) Niemytzki plane is a T_{1} space.
(87) Niemytzki plane is Tychonoff.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[6] Grzegorz Bancerek. On constructing topological spaces and Sorgenfrey line. Formalized Mathematics, 13(1):171-179, 2005.
[7] Grzegorz Bancerek. On the characteristic and weight of a topological space. Formalized Mathematics, 13(1):163-169, 2005.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_{4} topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[10] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[15] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[16] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[17] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[18] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[19] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[20] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
[21] Adam Grabowski. On the boundary and derivative of a set. Formalized Mathematics, 13(1):139-146, 2005.
[22] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[23] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[24] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in $\mathcal{E}_{\mathrm{T}}^{n}$. Formalized Mathematics, 12(3):301-306, 2004.
[25] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[26] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[27] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.
[28] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[29] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[30] Agnieszka Sakowicz, Jarosław Gryko, and Adam Grabowski. Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$. Formalized Mathematics, 5(1):93-96, 1996.
[31] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[32] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[33] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[34] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[35] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[36] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[37] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[38] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[39] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[40] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[41] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[42] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[43] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received November 7, 2005

