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Summary. We continue Mizar formalization of General Topology accord-

ing to the book [20] by Engelking. Niemytzki plane is defined as halfplane y ≥ 0

with topology introduced by a neighborhood system. Niemytzki plane is not

T4. Next, the definition of Tychonoff space is given. The characterization of

Tychonoff space by prebasis and the fact that Tychonoff spaces are between T3

and T4 is proved. The final result is that Niemytzki plane is also a Tychonoff

space.
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The notation and terminology used here are introduced in the following papers:

[38], [34], [15], [41], [17], [40], [35], [42], [11], [14], [12], [8], [13], [33], [10], [37],

[4], [2], [1], [3], [5], [32], [39], [22], [25], [23], [29], [27], [26], [28], [43], [18], [31],

[30], [36], [19], [24], [9], [16], [21], [7], and [6].

1. Preliminaries

In this paper x, y are elements of R.

One can prove the following propositions:

(1) For all functions f , g such that f ≈ g and for every set A holds

(f+·g)−1(A) = f−1(A) ∪ g−1(A).

(2) For all functions f , g such that dom f misses dom g and for every set A

holds (f+·g)−1(A) = f−1(A) ∪ g−1(A).
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Let X be a set and let Y be a non empty real-membered set. Note that

every relation between X and Y is real-yielding.

Next we state several propositions:

(3) For all sets x, a and for every function f such that a ∈ dom f holds

(commute(x7−→. f))(a) = x7−→. f(a).

(4) Let b be a set and f be a function. Then b ∈ dom commute(f) if and only

if there exists a set a and there exists a function g such that a ∈ dom f

and g = f(a) and b ∈ dom g.

(5) Let a, b be sets and f be a function. Then a ∈ dom(commute(f))(b) if

and only if there exists a function g such that a ∈ dom f and g = f(a)

and b ∈ dom g.

(6) For all sets a, b and for all functions f , g such that a ∈ dom f and

g = f(a) and b ∈ dom g holds (commute(f))(b)(a) = g(b).

(7) For every set a and for all functions f , g, h such that h = f ∪ g holds

(commute(h))(a) = (commute(f))(a) ∪ (commute(g))(a).

Let us note that every finite subset of R is bounded.

The following propositions are true:

(8) For all real numbers a, b, c, d such that a < b and c ≤ d holds ]a, c[ ∩

[b, d] = [b, c[.

(9) For all real numbers a, b, c, d such that a ≥ b and c > d holds ]a, c[ ∩

[b, d] = ]a, d].

(10) For all real numbers a, b, c, d such that a ≤ b and b < c and c ≤ d holds

[a, c[∪]b, d] = [a, d].

(11) For all real numbers a, b, c, d such that a ≤ b and b < c and c ≤ d holds

[a, c[∩]b, d] = ]b, c[.

(12) For all sets X, Y holds
∏
〈X, Y 〉 ≈ [:X, Y :] and

∏
〈X, Y 〉 = X · Y .

In this article we present several logical schemes. The scheme SCH1 deals

with non empty sets A, B, C, two unary functors F and G yielding sets, and a

unary predicate P, and states that:

There exists a function f from C into B such that for every element

a of A holds

(i) if P[a], then f(a) = F(a), and

(ii) if not P[a], then f(a) = G(a)

provided the parameters meet the following conditions:

• C ⊆ A, and

• For every element a of A such that a ∈ C holds if P[a], then

F(a) ∈ B and if not P[a], then G(a) ∈ B.

The scheme SCH2 deals with non empty sets A, B, C, three unary functors

F , G, and H yielding sets, and two unary predicates P, Q, and states that:
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There exists a function f from C into B such that for every element

a of A holds

(i) if P[a], then f(a) = F(a),

(ii) if not P[a] and Q[a], then f(a) = G(a), and

(iii) if not P[a] and not Q[a], then f(a) = H(a)

provided the parameters meet the following conditions:

• C ⊆ A, and

• For every element a of A such that a ∈ C holds if P[a], then

F(a) ∈ B and if not P[a] and Q[a], then G(a) ∈ B and if not P[a]

and not Q[a], then H(a) ∈ B.

The following four propositions are true:

(13) For all real numbers a, b holds |[a, b]|2 = a2 + b2.

(14) Let X be a topological space, Y be a non empty topological space, A,

B be closed subsets of X, f be a continuous function from X↾A into Y ,

and g be a continuous function from X↾B into Y . If f ≈ g, then f+·g is

a continuous function from X↾(A ∪ B) into Y .

(15) Let X be a topological space, Y be a non empty topological space, and

A, B be closed subsets of X. Suppose A misses B. Let f be a continuous

function from X↾A into Y and g be a continuous function from X↾B into

Y . Then f+·g is a continuous function from X↾(A ∪ B) into Y .

(16) Let X be a topological space, Y be a non empty topological space, A

be an open closed subset of X, f be a continuous function from X↾A into

Y , and g be a continuous function from X↾Ac into Y . Then f+·g is a

continuous function from X into Y .

2. Niemytzki Plane

One can prove the following proposition

(17) For every natural number n and for every point a of En
T and for every

positive real number r holds a ∈ Ball(a, r).

The subset (y = 0)-line of E2
T is defined by:

(Def. 1) (y = 0)-line = {[x, 0]}.

The subset (y ≥ 0)-plane of E2
T is defined as follows:

(Def. 2) (y ≥ 0)-plane = {[x, y] : y ≥ 0}.

We now state several propositions:

(18) For all sets a, b holds 〈a, b〉 ∈ (y = 0)-line iff a ∈ R and b = 0.

(19) For all real numbers a, b holds [a, b] ∈ (y = 0)-line iff b = 0.

(20) (y = 0)-line = c.
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(21) For all sets a, b holds 〈a, b〉 ∈ (y ≥ 0)-plane iff a ∈ R and there exists y

such that b = y and y ≥ 0.

(22) For all real numbers a, b holds [a, b] ∈ (y ≥ 0)-plane iff b ≥ 0.

Let us note that (y = 0)-line is non empty and (y ≥ 0)-plane is non empty.

We now state several propositions:

(23) (y = 0)-line ⊆ (y ≥ 0)-plane.

(24) For all real numbers a, b, r such that r > 0 holds Ball([a, b], r) ⊆ (y ≥

0)-plane iff r ≤ b.

(25) For all real numbers a, b, r such that r > 0 and b ≥ 0 holds Ball([a, b], r)

misses (y = 0)-line iff r ≤ b.

(26) Let n be a natural number, a, b be elements of En
T, and r1, r2 be positive

real numbers. If |a − b| ≤ r1 − r2, then Ball(b, r2) ⊆ Ball(a, r1).

(27) For every real number a and for all positive real numbers r1, r2 such

that r1 ≤ r2 holds Ball([a, r1], r1) ⊆ Ball([a, r2], r2).

(28) Let T1, T2 be non empty topological spaces, B1 be a neighborhood system

of T1, and B2 be a neighborhood system of T2. Suppose B1 = B2. Then

the topological structure of T1 = the topological structure of T2.

In the sequel r is an element of R.

Niemytzki plane is a strict non empty topological space and is defined by

the conditions (Def. 3).

(Def. 3)(i) The carrier of Niemytzki plane = (y ≥ 0)-plane, and

(ii) there exists a neighborhood system B of Niemytzki plane such that for

every x holds B([x, 0]) = {Ball([x, r], r) ∪ {[x, 0]} : r > 0} and for all x, y

such that y > 0 holds B([x, y]) = {Ball([x, y], r) ∩ (y ≥ 0)-plane : r > 0}.

The following propositions are true:

(29) (y ≥ 0)-plane \ (y = 0)-line is an open subset of Niemytzki plane.

(30) (y = 0)-line is a closed subset of Niemytzki plane.

(31) Let x be a real number and r be a positive real number. Then Ball([x,

r], r) ∪ {[x, 0]} is an open subset of Niemytzki plane.

(32) Let x be a real number and y, r be positive real numbers. Then Ball([x,

y], r) ∩ (y ≥ 0)-plane is an open subset of Niemytzki plane.

(33) Let x, y be real numbers and r be a positive real number. If r ≤ y, then

Ball([x, y], r) is an open subset of Niemytzki plane.

(34) Let p be a point of Niemytzki plane and r be a positive real number.

Then there exists a point a of E2
T and there exists an open subset U of

Niemytzki plane such that p ∈ U and a ∈ U and for every point b of E2
T

such that b ∈ U holds |b − a| < r.

(35) Let x, y be real numbers and r be a positive real number. Then there

exist rational numbers w, v such that [w, v] ∈ Ball([x, y], r) and [w, v] 6= [x,
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y].

(36) Let A be a subset of Niemytzki plane. If A = ((y ≥ 0)-plane \ (y =

0)-line) ∩
∏
〈Q, Q〉, then for every set x holds A \ {x} = ΩNiemytzki plane.

(37) Let A be a subset of Niemytzki plane. If A = (y ≥ 0)-plane\(y = 0)-line,

then for every set x holds A \ {x} = ΩNiemytzki plane.

(38) For every subset A of Niemytzki plane such that A = (y ≥ 0)-plane\(y =

0)-line holds A = ΩNiemytzki plane.

(39) For every subset A of Niemytzki plane such that A = (y = 0)-line holds

A = A and IntA = ∅.

(40) ((y ≥ 0)-plane \ (y = 0)-line) ∩
∏
〈Q, Q〉 is a dense subset of Niemytzki

plane.

(41) ((y ≥ 0)-plane \ (y = 0)-line) ∩
∏
〈Q, Q〉 is a dense-in-itself subset of

Niemytzki plane.

(42) (y ≥ 0)-plane \ (y = 0)-line is a dense subset of Niemytzki plane.

(43) (y ≥ 0)-plane\ (y = 0)-line is a dense-in-itself subset of Niemytzki plane.

(44) (y = 0)-line is a nowhere dense subset of Niemytzki plane.

(45) For every subset A of Niemytzki plane such that A = (y = 0)-line holds

Der A is empty.

(46) Every subset of (y = 0)-line is a closed subset of Niemytzki plane.

(47) Q is a dense subset of Sorgenfrey line.

(48) Sorgenfrey line is separable.

(49) Niemytzki plane is separable.

(50) Niemytzki plane is a T1 space.

(51) Niemytzki plane is not T4.

3. Tychonoff Spaces

Let T be a topological space. We say that T is Tychonoff if and only if the

conditions (Def. 4) are satisfied.

(Def. 4)(i) T is a T1 space, and

(ii) for every closed subset A of T and for every point a of T such that a ∈ Ac

there exists a continuous function f from T into I such that f(a) = 0 and

f◦A ⊆ {1}.

Let us observe that every topological space which is Tychonoff is also T1 and

T3 and every non empty topological space which is T1 and T4 is also Tychonoff.

We now state the proposition

(52) Let X be a T1 topological space. Suppose X is Tychonoff. Let B be a

prebasis of X, x be a point of X, and V be a subset of X. Suppose x ∈ V
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and V ∈ B. Then there exists a continuous function f from X into I such

that f(x) = 0 and f◦V c ⊆ {1}.

Let X be a set and let Y be a non empty real-membered set. Observe that

every relation between X and Y is real-yielding.

The following propositions are true:

(53) Let X be a topological space, R be a non empty subspace of R1, f , g

be continuous functions from X into R, and A be a subset of X. Suppose

that for every point x of X holds x ∈ A iff f(x) ≤ g(x). Then A is closed.

(54) Let X be a topological space, R be a non empty subspace of R1, and f ,

g be continuous functions from X into R. Then there exists a continuous

function h from X into R such that for every point x of X holds h(x) =

max(f(x), g(x)).

(55) Let X be a non empty topological space, R be a non empty subspace

of R1, A be a finite non empty set, and F be a many sorted function

indexed by A. Suppose that for every set a such that a ∈ A holds F (a)

is a continuous function from X into R. Then there exists a continuous

function f from X into R such that for every point x of X and for every

finite non empty subset S of R if S = rng(commute(F ))(x), then f(x) =

max S.

(56) Let X be a T1 non empty topological space and B be a prebasis of X.

Suppose that for every point x of X and for every subset V of X such

that x ∈ V and V ∈ B there exists a continuous function f from X into I

such that f(x) = 0 and f◦V c ⊆ {1}. Then X is Tychonoff.

(57) Sorgenfrey line is a T1 space.

(58) For every real number x holds ]−∞, x[ is a closed subset of Sorgenfrey

line.

(59) For every real number x holds ]−∞, x] is a closed subset of Sorgenfrey

line.

(60) For every real number x holds [x,+∞[ is a closed subset of Sorgenfrey

line.

(61) For all real numbers x, y holds [x, y[ is a closed subset of Sorgenfrey line.

(62) Let x be a real number and w be a rational number. Suppose x < w.

Then there exists a continuous function f from Sorgenfrey line into I such

that for every point a of Sorgenfrey line holds

(i) if a ∈ [x, w[, then f(a) = 0, and

(ii) if a /∈ [x, w[, then f(a) = 1.

(63) Sorgenfrey line is Tychonoff.
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4. Niemytzki Plane is Tychonoff Space

Let x be a real number and let r be a positive real number. The func-

tor +(x, r) yielding a function from Niemytzki plane into I is defined by the

conditions (Def. 5).

(Def. 5)(i) (+(x, r))([x, 0]) = 0, and

(ii) for every real number a and for every non negative real number b holds

if a 6= x or b 6= 0 and if [a, b] /∈ Ball([x, r], r), then (+(x, r))([a, b]) = 1 and

if [a, b] ∈ Ball([x, r], r), then (+(x, r))([a, b]) = |[x,0]−[a,b]|2

2·r·b .

One can prove the following propositions:

(64) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x be a real number and r

be a positive real number. If (+(x, r))(p) = 0, then p = [x, 0].

(65) For all real numbers x, y and for every positive real number r such that

x 6= y holds (+(x, r))([y, 0]) = 1.

(66) Let p be a point of E2
T, x be a real number, and a, r be positive real

numbers. If a ≤ 1 and |p−[x, r·a]| = r·a and p2 6= 0, then (+(x, r))(p) = a.

(67) Let p be a point of E2
T, x, a be real numbers, and r be a positive real

number. If 0 ≤ a and a ≤ 1 and |p− [x, r ·a]| < r ·a, then (+(x, r))(p) < a.

(68) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a be real numbers and r

be a positive real number. If 0 ≤ a and a < 1 and |p − [x, r · a]| > r · a,

then (+(x, r))(p) > a.

(69) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a, b be real numbers and

r be a positive real number. Suppose 0 ≤ a and b ≤ 1 and (+(x, r))(p) ∈

]a, b[. Then there exists a positive real number r1 such that r1 ≤ p2 and

Ball(p, r1) ⊆ (+(x, r))−1(]a, b[).

(70) For every real number x and for all positive real numbers a, r holds

Ball([x, r · a], r · a) ⊆ (+(x, r))−1(]0, a[).

(71) For every real number x and for all positive real numbers a, r holds

Ball([x, r · a], r · a) ∪ {[x, 0]} ⊆ (+(x, r))−1([0, a[).

(72) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x, a be real numbers and

r be a positive real number. If 0 < (+(x, r))(p) and (+(x, r))(p) < a and

a ≤ 1, then p ∈ Ball([x, r · a], r · a).

(73) Let p be a point of E2
T. Suppose p2 > 0. Let x, a be real numbers and

r be a positive real number. Suppose 0 ≤ a and a < (+(x, r))(p). Then

there exists a positive real number r1 such that r1 ≤ p2 and Ball(p, r1) ⊆

(+(x, r))−1(]a, 1]).

(74) Let p be a point of E2
T. Suppose p2 = 0. Let x be a real number and r

be a positive real number. Suppose (+(x, r))(p) = 1. Then there exists a

positive real number r1 such that Ball([p1, r1], r1)∪{p} ⊆ (+(x, r))−1({1}).
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(75) Let T be a non empty topological space, S be a subspace of T , and B

be a basis of T . Then {A ∩ ΩS ;A ranges over subsets of T : A ∈ B ∧ A

meets ΩS} is a basis of S.

(76) {]a, b[; a ranges over real numbers, b ranges over real numbers: a < b} is

a basis of R1.

(77) Let T be a topological space, U , V be subsets of T , and B be a set. If

U ∈ B and V ∈ B and B ∪{U ∪V } is a basis of T , then B is a basis of T .

(78) {[0, a[; a ranges over real numbers: 0 < a ∧ a ≤ 1} ∪ {]a, 1]; a ranges

over real numbers: 0 ≤ a ∧ a < 1} ∪ {]a, b[; a ranges over real numbers, b

ranges over real numbers: 0 ≤ a ∧ a < b ∧ b ≤ 1} is a basis of I.

(79) Let T be a non empty topological space and f be a function from T

into I. Then f is continuous if and only if for all real numbers a, b such

that 0 ≤ a and a < 1 and 0 < b and b ≤ 1 holds f−1([0, b[) is open and

f−1(]a, 1]) is open.

Let x be a real number and let r be a positive real number. Note that +(x, r)

is continuous.

We now state the proposition

(80) Let U be a subset of Niemytzki plane and given x, r. Suppose U =

Ball([x, r], r) ∪ {[x, 0]}. Then there exists a continuous function f from

Niemytzki plane into I such that

(i) f([x, 0]) = 0, and

(ii) for all real numbers a, b holds if [a, b] ∈ U c, then f([a, b]) = 1 and if [a,

b] ∈ U \ {[x, 0]}, then f([a, b]) = |[x,0]−[a,b]|2

2·r·b .

Let x, y be real numbers and let r be a positive real number. The functor

+(x, y, r) yields a function from Niemytzki plane into I and is defined by the

condition (Def. 6).

(Def. 6) Let a be a real number and b be a non negative real number. Then

(i) if [a, b] /∈ Ball([x, y], r), then (+(x, y, r))([a, b]) = 1, and

(ii) if [a, b] ∈ Ball([x, y], r), then (+(x, y, r))([a, b]) = |[x,y]−[a,b]|
r

.

The following propositions are true:

(81) Let p be a point of E2
T. Suppose p2 ≥ 0. Let x be a real number, y

be a non negative real number, and r be a positive real number. Then

(+(x, y, r))(p) = 0 if and only if p = [x, y].

(82) Let x be a real number, y be a non negative real number, and r, a

be positive real numbers. If a ≤ 1, then (+(x, y, r))−1([0, a[) = Ball([x,

y], r · a) ∩ (y ≥ 0)-plane.

(83) Let p be a point of E2
T. Suppose p2 > 0. Let x be a real number,

a be a non negative real number, and y, r be positive real numbers. If

(+(x, y, r))(p) > a, then |[x, y]−p| > r·a and Ball(p, |[x, y]−p|−r·a)∩(y ≥

0)-plane ⊆ (+(x, y, r))−1(]a, 1]).
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(84) Let p be a point of E2
T. Suppose p2 = 0. Let x be a real number, a be

a non negative real number, and y, r be positive real numbers. Suppose

(+(x, y, r))(p) > a. Then |[x, y] − p| > r · a and there exists a positive

real number r1 such that r1 = |[x,y]−p|−r·a
2 and Ball([p1, r1], r1) ∪ {p} ⊆

(+(x, y, r))−1(]a, 1]).

Let x be a real number and let y, r be positive real numbers. One can verify

that +(x, y, r) is continuous.

We now state three propositions:

(85) Let U be a subset of Niemytzki plane and given x, y, r. Suppose y > 0

and U = Ball([x, y], r) ∩ (y ≥ 0)-plane. Then there exists a continuous

function f from Niemytzki plane into I such that f([x, y]) = 0 and for all

real numbers a, b holds if [a, b] ∈ U c, then f([a, b]) = 1 and if [a, b] ∈ U,

then f([a, b]) = |[x,y]−[a,b]|
r

.

(86) Niemytzki plane is a T1 space.

(87) Niemytzki plane is Tychonoff.
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