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The papers [27], [30], [31], [9], [1], [2], [26], [3], [28], [10], [12], [21], [29], [22], [5],

[16], [6], [23], [32], [11], [20], [17], [18], [19], [7], [13], [25], [24], [15], [4], and [8]

provide the terminology and notation for this paper.

1. Preliminaries

Let T be a 1-sorted structure. The functor TotFamT yielding a family of

subsets of T is defined by:

(Def. 1) TotFamT = 2the carrier of T .

The following proposition is true

(1) For every set T and for every family F of subsets of T holds F is count-

able iff F c is countable.

Let us note that Q is countable.

The scheme FraenCoun11 concerns a unary predicate P, and states that:

{{n};n ranges over elements of Q: P[n]} is countable
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for all values of the parameters.

One can prove the following proposition

(2) For every non empty topological space T and for every subset A of T

holds DerA = {x;x ranges over points of T : x ∈ A \ {x}}.

Let us note that every topological structure which is finite is also second-

countable.

One can verify that R is non countable.

One can verify the following observations:

∗ every set which is non countable is also non finite,

∗ every set which is non finite is also non trivial, and

∗ there exists a set which is non countable and non empty.

We adopt the following rules: T is a non empty topological space, A, B are

subsets of T , and F , G are families of subsets of T .

One can prove the following propositions:

(3) A is closed iff Der A ⊆ A.

(4) Let T be a non empty topological structure, B be a basis of T , and V be

a subset of T . Suppose V is open and V 6= ∅. Then there exists a subset

W of T such that W ∈ B and W ⊆ V and W 6= ∅.

2. Regular Formalization: Separable Spaces

The following propositions are true:

(5) density T ≤ weight T.

(6) T is separable iff there exists a subset of T which is dense and countable.

(7) If T is second-countable, then T is separable.

One can check that every non empty topological space which is second-

countable is also separable.

The following four propositions are true:

(8) Let T be a non empty topological space and A, B be subsets of T . If A

and B are separated, then Fr(A ∪ B) = FrA ∪ Fr B.

(9) If F is locally finite, then Fr
⋃

F ⊆
⋃

Fr F.

(10) For every discrete non empty topological space T holds T is separable

iff ΩT ≤ ℵ0.

(11) For every discrete non empty topological space T holds T is separable

iff T is countable.



on the borel families of subsets . . . 455

3. Families of Subsets Closed for Countable Unions and

Complement

Let us consider T , F . We say that F is all-open-containing if and only if:

(Def. 2) For every subset A of T such that A is open holds A ∈ F.

Let us consider T , F . We say that F is all-closed-containing if and only if:

(Def. 3) For every subset A of T such that A is closed holds A ∈ F.

Let T be a set and let F be a family of subsets of T . We say that F is closed

for countable unions if and only if:

(Def. 4) For every countable family G of subsets of T such that G ⊆ F holds
⋃

G ∈ F.

Let T be a set. Note that every σ-field of subsets of T is closed for countable

unions.

One can prove the following proposition

(12) For every set T and for every family F of subsets of T such that F is

closed for countable unions holds ∅ ∈ F.

Let T be a set. One can verify that every family of subsets of T which is

closed for countable unions is also non empty.

Next we state the proposition

(13) Let T be a set and F be a family of subsets of T . Then F is a σ-field of

subsets of T if and only if F is closed for complement operator and closed

for countable unions.

Let T be a set and let F be a family of subsets of T . We say that F is closed

for countable meets if and only if:

(Def. 5) For every countable family G of subsets of T such that G ⊆ F holds
⋂

G ∈ F.

Next we state four propositions:

(14) Let F be a family of subsets of T . Then the following statements are

equivalent

(i) F is all-closed-containing and closed for complement operator,

(ii) F is all-open-containing and closed for complement operator.

(15) For every set T and for every family F of subsets of T such that F is

closed for complement operator holds F = F c.

(16) Let T be a set and F , G be families of subsets of T . If F ⊆ G and G is

closed for complement operator, then F c ⊆ G.

(17) Let T be a set and F be a family of subsets of T . Then the following

statements are equivalent

(i) F is closed for countable meets and closed for complement operator,

(ii) F is closed for countable unions and closed for complement operator.
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Let us consider T . One can verify that every family of subsets of T which is

all-open-containing, closed for complement operator, and closed for countable

unions is also all-closed-containing and closed for countable meets and every

family of subsets of T which is all-closed-containing, closed for complement

operator, and closed for countable meets is also all-open-containing and closed

for countable unions.

4. On the Families of Subsets

Let T be a set and let F be a countable family of subsets of T . Note that

F c is countable.

Let us consider T . Note that every family of subsets of T which is empty is

also open and closed.

Let us consider T . One can check that there exists a family of subsets of T

which is countable, open, and closed.

We now state the proposition

(18) For every set T holds ∅ is an empty family of subsets of T .

Let us observe that every set which is empty is also countable.

5. Collective Properties of Families

One can prove the following two propositions:

(19) If F = {A}, then A is open iff F is open.

(20) If F = {A}, then A is closed iff F is closed.

Let T be a set and let F , G be families of subsets of T . Then F ⋓ G is a

family of subsets of T . Then F ⋒ G is a family of subsets of T .

Next we state a number of propositions:

(21) If F is closed and G is closed, then F ⋓ G is closed.

(22) If F is closed and G is closed, then F ⋒ G is closed.

(23) If F is open and G is open, then F ⋓ G is open.

(24) If F is open and G is open, then F ⋒ G is open.

(25) For every set T and for all families F , G of subsets of T holds F ⋓ G ≤

[:F, G :] .

(26) For every set T and for all families F , G of subsets of T holds F ⋒ G ≤

[:F, G :] .

(27) For all sets F , G holds
⋃

(F ⋒ G) ⊆
⋃

F ∪
⋃

G.

(28) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋃

F∪
⋃

G =
⋃

(F⋒G).

(29) For every set F holds ∅ ⋒ F = ∅.
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(30) For all sets F , G such that F ⋒ G = ∅ holds F = ∅ or G = ∅.

(31) For all sets F , G such that F ⋓ G = ∅ holds F = ∅ or G = ∅.

(32) For all sets F , G holds
⋂

(F ⋒ G) ⊆
⋂

F ∪
⋂

G.

(33) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋂

(F⋒G) =
⋂

F∪
⋂

G.

(34) For all sets F , G such that F 6= ∅ and G 6= ∅ holds
⋂

F∩
⋂

G =
⋂

(F⋓G).

6. Fσ and Gδ Types of Subsets

Let us consider T , A. We say that A is Fσ if and only if:

(Def. 6) There exists a closed countable family F of subsets of T such that A =
⋃

F.

Let us consider T , A. We say that A is Gδ if and only if:

(Def. 7) There exists an open countable family F of subsets of T such that A =
⋂

F.

The following propositions are true:

(35) ∅T is Fσ.

(36) ∅T is Gδ.

Let us consider T . Note that ∅T is Fσ and Gδ.

Next we state two propositions:

(37) ΩT is Fσ.

(38) ΩT is Gδ.

Let us consider T . One can verify that ΩT is Fσ and Gδ.

One can prove the following propositions:

(39) If A is Fσ, then Ac is Gδ.

(40) If A is Gδ, then Ac is Fσ.

(41) If A is Fσ and B is Fσ, then A ∩ B is Fσ.

(42) If A is Fσ and B is Fσ, then A ∪ B is Fσ.

(43) If A is Gδ and B is Gδ, then A ∪ B is Gδ.

(44) If A is Gδ and B is Gδ, then A ∩ B is Gδ.

(45) For every subset A of T such that A is closed holds A is Fσ.

(46) For every subset A of T such that A is open holds A is Gδ.

(47) For every subset A of R1 such that A = Q holds A is Fσ.
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7. T1/2 Topological Spaces

Let T be a topological space. We say that T is T1/2 if and only if:

(Def. 8) For every subset A of T holds DerA is closed.

We now state three propositions:

(48) For every topological space T such that T is T1 holds T is T1/2.

(49) For every non empty topological space T such that T is T1/2 holds T is

T0.

(50) For every non empty topological space T holds every point p of T is

isolated in ΩT or an accumulation point of ΩT .

Let us note that every topological space which is T1/2 is also T0 and every

topological space which is T1 is also T1/2.

8. Condensation Points

Let us consider T , A and let x be a point of T . We say that x is a conden-

sation point of A if and only if:

(Def. 9) For every neighbourhood N of x holds N ∩ A is not countable.

In the sequel x denotes a point of T .

One can prove the following proposition

(51) If x is a condensation point of A and A ⊆ B, then x is a condensation

point of B.

Let us consider T , A. The functor A0 yielding a subset of T is defined as

follows:

(Def. 10) For every point x of T holds x ∈ A0 iff x is a condensation point of A.

The following propositions are true:

(52) For every point p of T such that p is a condensation point of A holds p

is an accumulation point of A.

(53) A0 ⊆ Der A.

(54) A0 = A0.

(55) If A ⊆ B, then A0 ⊆ B0.

(56) If x is a condensation point of A ∪ B, then x is a condensation point of

A or a condensation point of B.

(57) A ∪ B0 = A0 ∪ B0.

(58) If A is countable, then there exists no point of T which is a condensation

point of A.

(59) If A is countable, then A0 = ∅.
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Let us consider T and let A be a countable subset of T . Note that A0 is

empty.

The following proposition is true

(60) If T is second-countable, then there exists a basis of T which is countable.

Let us mention that there exists a topological space which is second-countable

and non empty.

9. Borel Families of Subsets

Let us consider T . Observe that TotFamT is non empty, all-open-containing,

closed for complement operator, and closed for countable unions.

We now state four propositions:

(61) For every set T and for every sequence A of subsets of T holds rng A is

a countable non empty family of subsets of T .

(62) Let T , F be sets. Then F is a σ-field of subsets of T if and only if F is

a closed for complement operator σ-field of subsets-like non empty family

of subsets of T .

(63) For all families F , G of subsets of T such that F is all-open-containing

and F ⊆ G holds G is all-open-containing.

(64) Let F , G be families of subsets of T . Suppose F is all-closed-containing

and F ⊆ G. Then G is all-closed-containing.

Let T be a 1-sorted structure. A σ-field of subsets of T is a σ-field of subsets

of the carrier of T .

Let T be a non empty topological space. Note that there exists a family

of subsets of T which is closed for complement operator, closed for count-

able unions, closed for countable meets, all-closed-containing, and all-open-

containing.

We now state the proposition

(65) σ(TotFam T ) is all-open-containing, closed for complement operator, and

closed for countable unions.

Let us consider T . One can verify that σ(TotFam T ) is all-open-containing,

closed for complement operator, and closed for countable unions.

Let T be a non empty 1-sorted structure. Note that there exists a family

of subsets of T which is σ-field of subsets-like, closed for complement operator,

closed for countable unions, and non empty.

Let T be a non empty topological space. One can verify that every σ-field

of subsets of T is closed for countable unions.

We now state the proposition
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(66) Let T be a non empty topological space and F be a family of subsets of

T . Suppose F is closed for complement operator and closed for countable

unions. Then F is a σ-field of subsets of T .

Let T be a non empty topological space. Note that there exists a σ-field of

subsets of T which is all-open-containing.

Let T be a non empty topological space. Note that Topology(T ) is open and

all-open-containing.

We now state the proposition

(67) Let X be a family of subsets of T . Then there exists an all-open-

containing closed for complement operator closed for countable unions

family Y of subsets of T such that

(i) X ⊆ Y, and

(ii) for every all-open-containing closed for complement operator closed for

countable unions family Z of subsets of T such that X ⊆ Z holds Y ⊆ Z.

Let us consider T . The functor BorelSetsT yields an all-open-containing

closed for complement operator closed for countable unions family of subsets of

T and is defined by the condition (Def. 11).

(Def. 11) Let G be an all-open-containing closed for complement operator closed

for countable unions family of subsets of T . Then BorelSets T ⊆ G.

Next we state three propositions:

(68) For every closed family F of subsets of T holds F ⊆ BorelSets T.

(69) For every open family F of subsets of T holds F ⊆ BorelSets T.

(70) BorelSets T = σ(Topology(T )).

Let us consider T , A. We say that A is Borel if and only if:

(Def. 12) A ∈ BorelSets T.

Let us consider T . Note that every subset of T which is Fσ is also Borel.

Let us consider T . Note that every subset of T which is Gδ is also Borel.
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