On the Borel Families of Subsets of Topological Spaces¹

Adam Grabowski Institute of Mathematics University of Białystok Akademicka 2, 15-267 Białystok, Poland

Summary. This is the next Mizar article in a series aiming at complete formalization of "General Topology" [14] by Engelking. We cover the second part of Section 1.3.

MML identifier: TOPGEN_4, version: 7.5.01 4.39.921

The papers [27], [30], [31], [9], [1], [2], [26], [3], [28], [10], [12], [21], [29], [22], [5], [16], [6], [23], [32], [11], [20], [17], [18], [19], [7], [13], [25], [24], [15], [4], and [8] provide the terminology and notation for this paper.

1. Preliminaries

Let T be a 1-sorted structure. The functor $\operatorname{TotFam} T$ yielding a family of subsets of T is defined by:

(Def. 1) TotFam $T = 2^{\text{the carrier of } T}$.

The following proposition is true

(1) For every set T and for every family F of subsets of T holds F is countable iff F^{c} is countable.

Let us note that \mathbb{Q} is countable.

The scheme *FraenCoun11* concerns a unary predicate \mathcal{P} , and states that: $\{\{n\}; n \text{ ranges over elements of } \mathbb{Q}: \mathcal{P}[n]\}$ is countable

C 2005 University of Białystok ISSN 1426-2630

 $^{^1\}mathrm{This}$ work has been partially supported by the KBN grant 4 T11C 039 24 and the FP6 IST grant TYPES No. 510996.

for all values of the parameters.

One can prove the following proposition

(2) For every non empty topological space T and for every subset A of T holds $\text{Der } A = \{x; x \text{ ranges over points of } T: x \in \overline{A \setminus \{x\}}\}.$

Let us note that every topological structure which is finite is also secondcountable.

One can verify that \mathbb{R} is non countable.

One can verify the following observations:

- * every set which is non countable is also non finite,
- * every set which is non finite is also non trivial, and
- * there exists a set which is non countable and non empty.

We adopt the following rules: T is a non empty topological space, A, B are subsets of T, and F, G are families of subsets of T.

One can prove the following propositions:

- (3) A is closed iff $\operatorname{Der} A \subseteq A$.
- (4) Let T be a non empty topological structure, B be a basis of T, and V be a subset of T. Suppose V is open and $V \neq \emptyset$. Then there exists a subset W of T such that $W \in B$ and $W \subseteq V$ and $W \neq \emptyset$.

2. Regular Formalization: Separable Spaces

The following propositions are true:

- (5) density $T \leq \text{weight } T$.
- (6) T is separable iff there exists a subset of T which is dense and countable.
- (7) If T is second-countable, then T is separable.

One can check that every non empty topological space which is secondcountable is also separable.

The following four propositions are true:

- (8) Let T be a non empty topological space and A, B be subsets of T. If A and B are separated, then $Fr(A \cup B) = Fr A \cup Fr B$.
- (9) If F is locally finite, then $\operatorname{Fr} \bigcup F \subseteq \bigcup \operatorname{Fr} F$.
- (10) For every discrete non empty topological space T holds T is separable iff $\overline{\overline{\Omega_T}} \leq \aleph_0$.
- (11) For every discrete non empty topological space T holds T is separable iff T is countable.

3. Families of Subsets Closed for Countable Unions and Complement

Let us consider T, F. We say that F is all-open-containing if and only if:

- (Def. 2) For every subset A of T such that A is open holds $A \in F$.
- Let us consider T, F. We say that F is all-closed-containing if and only if: (Def. 3) For every subset A of T such that A is closed holds $A \in F$.

Let T be a set and let F be a family of subsets of T. We say that F is closed for countable unions if and only if:

(Def. 4) For every countable family G of subsets of T such that $G \subseteq F$ holds $\bigcup G \in F$.

Let T be a set. Note that every σ -field of subsets of T is closed for countable unions.

One can prove the following proposition

(12) For every set T and for every family F of subsets of T such that F is closed for countable unions holds $\emptyset \in F$.

Let T be a set. One can verify that every family of subsets of T which is closed for countable unions is also non empty.

Next we state the proposition

(13) Let T be a set and F be a family of subsets of T. Then F is a σ -field of subsets of T if and only if F is closed for complement operator and closed for countable unions.

Let T be a set and let F be a family of subsets of T. We say that F is closed for countable meets if and only if:

(Def. 5) For every countable family G of subsets of T such that $G \subseteq F$ holds $\bigcap G \in F$.

Next we state four propositions:

- (14) Let F be a family of subsets of T. Then the following statements are equivalent
 - (i) F is all-closed-containing and closed for complement operator,
 - (ii) F is all-open-containing and closed for complement operator.
- (15) For every set T and for every family F of subsets of T such that F is closed for complement operator holds $F = F^{c}$.
- (16) Let T be a set and F, G be families of subsets of T. If $F \subseteq G$ and G is closed for complement operator, then $F^{c} \subseteq G$.
- (17) Let T be a set and F be a family of subsets of T. Then the following statements are equivalent
 - (i) F is closed for countable meets and closed for complement operator,
 - (ii) F is closed for countable unions and closed for complement operator.

ADAM GRABOWSKI

Let us consider T. One can verify that every family of subsets of T which is all-open-containing, closed for complement operator, and closed for countable unions is also all-closed-containing and closed for countable meets and every family of subsets of T which is all-closed-containing, closed for complement operator, and closed for countable meets is also all-open-containing and closed for countable unions.

4. On the Families of Subsets

Let T be a set and let F be a countable family of subsets of T. Note that F^{c} is countable.

Let us consider T. Note that every family of subsets of T which is empty is also open and closed.

Let us consider T. One can check that there exists a family of subsets of T which is countable, open, and closed.

We now state the proposition

(18) For every set T holds \emptyset is an empty family of subsets of T.

Let us observe that every set which is empty is also countable.

5. Collective Properties of Families

One can prove the following two propositions:

- (19) If $F = \{A\}$, then A is open iff F is open.
- (20) If $F = \{A\}$, then A is closed iff F is closed.

Let T be a set and let F, G be families of subsets of T. Then $F \cap G$ is a family of subsets of T. Then $F \cup G$ is a family of subsets of T.

Next we state a number of propositions:

- (21) If F is closed and G is closed, then $F \cap G$ is closed.
- (22) If F is closed and G is closed, then $F \cup G$ is closed.
- (23) If F is open and G is open, then $F \cap G$ is open.
- (24) If F is open and G is open, then $F \cup G$ is open.
- (25) For every set T and for all families F, G of subsets of T holds $\overline{F \cap G} \leq \overline{[F, G]}$.
- (26) For every set T and for all families F, G of subsets of T holds $\overline{F \cup G} \leq \overline{[F, G]}$.
- (27) For all sets F, G holds $\bigcup (F \sqcup G) \subseteq \bigcup F \cup \bigcup G$.
- (28) For all sets F, G such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcup F \cup \bigcup G = \bigcup (F \cup G)$.
- (29) For every set F holds $\emptyset \cup F = \emptyset$.

- (30) For all sets F, G such that $F \cup G = \emptyset$ holds $F = \emptyset$ or $G = \emptyset$.
- (31) For all sets F, G such that $F \cap G = \emptyset$ holds $F = \emptyset$ or $G = \emptyset$.
- (32) For all sets F, G holds $\bigcap (F \cup G) \subseteq \bigcap F \cup \bigcap G$.
- (33) For all sets F, G such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcap (F \sqcup G) = \bigcap F \cup \bigcap G$.
- (34) For all sets F, G such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcap F \cap \bigcap G = \bigcap (F \cap G)$.

6. F_{σ} and G_{δ} Types of Subsets

Let us consider T, A. We say that A is F_{σ} if and only if:

(Def. 6) There exists a closed countable family F of subsets of T such that $A = \bigcup F$.

Let us consider T, A. We say that A is G_{δ} if and only if:

(Def. 7) There exists an open countable family F of subsets of T such that $A = \bigcap F$.

The following propositions are true:

- (35) \emptyset_T is F_{σ} .
- (36) \emptyset_T is G_{δ} .

Let us consider T. Note that \emptyset_T is F_{σ} and G_{δ} . Next we state two propositions:

- (37) Ω_T is F_{σ} .
- (38) Ω_T is G_{δ} .

Let us consider T. One can verify that Ω_T is F_{σ} and G_{δ} . One can prove the following propositions:

- (39) If A is F_{σ} , then A^{c} is G_{δ} .
- (40) If A is G_{δ} , then A^{c} is F_{σ} .
- (41) If A is F_{σ} and B is F_{σ} , then $A \cap B$ is F_{σ} .
- (42) If A is F_{σ} and B is F_{σ} , then $A \cup B$ is F_{σ} .
- (43) If A is G_{δ} and B is G_{δ} , then $A \cup B$ is G_{δ} .
- (44) If A is G_{δ} and B is G_{δ} , then $A \cap B$ is G_{δ} .
- (45) For every subset A of T such that A is closed holds A is F_{σ} .
- (46) For every subset A of T such that A is open holds A is G_{δ} .
- (47) For every subset A of \mathbb{R}^1 such that $A = \mathbb{Q}$ holds A is F_{σ} .

ADAM GRABOWSKI

7. $T_{1/2}$ Topological Spaces

Let T be a topological space. We say that T is $T_{1/2}$ if and only if:

(Def. 8) For every subset A of T holds Der A is closed.

We now state three propositions:

- (48) For every topological space T such that T is T_1 holds T is $T_{1/2}$.
- (49) For every non empty topological space T such that T is $T_{1/2}$ holds T is T_0 .
- (50) For every non empty topological space T holds every point p of T is isolated in Ω_T or an accumulation point of Ω_T .

Let us note that every topological space which is $T_{1/2}$ is also T_0 and every topological space which is T_1 is also $T_{1/2}$.

8. Condensation Points

Let us consider T, A and let x be a point of T. We say that x is a condensation point of A if and only if:

(Def. 9) For every neighbourhood N of x holds $N \cap A$ is not countable.

In the sequel x denotes a point of T.

One can prove the following proposition

(51) If x is a condensation point of A and $A \subseteq B$, then x is a condensation point of B.

Let us consider T, A. The functor A^0 yielding a subset of T is defined as follows:

- (Def. 10) For every point x of T holds $x \in A^0$ iff x is a condensation point of A. The following propositions are true:
 - (52) For every point p of T such that p is a condensation point of A holds p is an accumulation point of A.
 - (53) $A^0 \subseteq \text{Der } A.$
 - (54) $A^0 = \overline{A^0}.$
 - (55) If $A \subseteq B$, then $A^0 \subseteq B^0$.
 - (56) If x is a condensation point of $A \cup B$, then x is a condensation point of A or a condensation point of B.
 - $(57) \quad A \cup B^0 = A^0 \cup B^0.$
 - (58) If A is countable, then there exists no point of T which is a condensation point of A.
 - (59) If A is countable, then $A^0 = \emptyset$.

Let us consider T and let A be a countable subset of T. Note that A^0 is empty.

The following proposition is true

(60) If T is second-countable, then there exists a basis of T which is countable.

Let us mention that there exists a topological space which is second-countable and non empty.

9. Borel Families of Subsets

Let us consider T. Observe that TotFam T is non empty, all-open-containing, closed for complement operator, and closed for countable unions.

We now state four propositions:

- (61) For every set T and for every sequence A of subsets of T holds rng A is a countable non empty family of subsets of T.
- (62) Let T, F be sets. Then F is a σ -field of subsets of T if and only if F is a closed for complement operator σ -field of subsets-like non empty family of subsets of T.
- (63) For all families F, G of subsets of T such that F is all-open-containing and $F \subseteq G$ holds G is all-open-containing.
- (64) Let F, G be families of subsets of T. Suppose F is all-closed-containing and $F \subseteq G$. Then G is all-closed-containing.

Let T be a 1-sorted structure. A σ -field of subsets of T is a σ -field of subsets of the carrier of T.

Let T be a non empty topological space. Note that there exists a family of subsets of T which is closed for complement operator, closed for countable unions, closed for countable meets, all-closed-containing, and all-opencontaining.

We now state the proposition

(65) $\sigma(\text{TotFam }T)$ is all-open-containing, closed for complement operator, and closed for countable unions.

Let us consider T. One can verify that $\sigma(\text{TotFam}\,T)$ is all-open-containing, closed for complement operator, and closed for countable unions.

Let T be a non empty 1-sorted structure. Note that there exists a family of subsets of T which is σ -field of subsets-like, closed for complement operator, closed for countable unions, and non empty.

Let T be a non empty topological space. One can verify that every σ -field of subsets of T is closed for countable unions.

We now state the proposition

ADAM GRABOWSKI

(66) Let T be a non empty topological space and F be a family of subsets of T. Suppose F is closed for complement operator and closed for countable unions. Then F is a σ -field of subsets of T.

Let T be a non empty topological space. Note that there exists a σ -field of subsets of T which is all-open-containing.

Let T be a non empty topological space. Note that Topology(T) is open and all-open-containing.

We now state the proposition

- (67) Let X be a family of subsets of T. Then there exists an all-opencontaining closed for complement operator closed for countable unions family Y of subsets of T such that
 - (i) $X \subseteq Y$, and
 - (ii) for every all-open-containing closed for complement operator closed for countable unions family Z of subsets of T such that $X \subseteq Z$ holds $Y \subseteq Z$.

Let us consider T. The functor BorelSets T yields an all-open-containing closed for complement operator closed for countable unions family of subsets of T and is defined by the condition (Def. 11).

(Def. 11) Let G be an all-open-containing closed for complement operator closed for countable unions family of subsets of T. Then BorelSets $T \subseteq G$.

Next we state three propositions:

- (68) For every closed family F of subsets of T holds $F \subseteq \text{BorelSets } T$.
- (69) For every open family F of subsets of T holds $F \subseteq$ BorelSets T.
- (70) BorelSets $T = \sigma(\text{Topology}(T)).$

Let us consider T, A. We say that A is Borel if and only if:

(Def. 12) $A \in \text{BorelSets } T$.

Let us consider T. Note that every subset of T which is F_{σ} is also Borel. Let us consider T. Note that every subset of T which is G_{δ} is also Borel.

References

- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
- [3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65–69, 1991.
- [4] Grzegorz Bancerek. On constructing topological spaces and Sorgenfrey line. Formalized Mathematics, 13(1):171–179, 2005.
- [5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.
- [6] Józef Białas. The σ -additive measure theory. Formalized Mathematics, 2(2):263–270, 1991.
- [7] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T_4 topological spaces. Formalized Mathematics, 5(3):361–366, 1996.
- [8] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481– 485, 1991.
- [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.

460

- [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257–261, 1990.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
- [13] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [14] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
- [15] Adam Grabowski. On the boundary and derivative of a set. Formalized Mathematics, 13(1):139–146, 2005.
- [16] Jolanta Kamieńska. Representation theorem for Heyting lattices. Formalized Mathematics, 4(1):41–45, 1993.
- [17] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143–149, 1992.
- [18] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285–294, 1998.
- [19] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [20] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
- [21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
- Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
 Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
- [25] Beata Padlewska and Agata Darmochwar. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [24] Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429–430, 2001.
- [25] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233–236, 1996.
- [26] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [27] Andrzej Trybulec. Tarski Grothendieck set theory. *Formalized Mathematics*, 1(1):9–11, 1990.
- [28] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97–105, 1990.
- [29] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.
- [30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [31] Edmund Woronowicz. Relations and their basic properties. *Formalized Mathematics*, 1(1):73–83, 1990.
- [32] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231–237, 1990.

Received August 30, 2005