# On the Borel Families of Subsets of Topological Spaces ${ }^{1}$ 

Adam Grabowski<br>Institute of Mathematics<br>University of Białystok<br>Akademicka 2, 15-267 Białystok, Poland


#### Abstract

Summary. This is the next Mizar article in a series aiming at complete formalization of "General Topology" [14] by Engelking. We cover the second part of Section 1.3


MML identifier: TOPGEN_4, version: 7.5.01 4.39.921

The papers [27], [30], [31], [9], [1], [2], [26], [3], [28], [10], [12], [21], [29], [22], [5], [16], [6], [23], [32], [11], [20], [17], [18], [19], [7], [13], [25], [24], [15], [4], and [8] provide the terminology and notation for this paper.

## 1. Preliminaries

Let $T$ be a 1 -sorted structure. The functor $\operatorname{TotFam} T$ yielding a family of subsets of $T$ is defined by:
(Def. 1) TotFam $T=2^{\text {the carrier of } T}$.
The following proposition is true
(1) For every set $T$ and for every family $F$ of subsets of $T$ holds $F$ is countable iff $F^{\mathrm{c}}$ is countable.
Let us note that $\mathbb{Q}$ is countable.
The scheme FraenCoun11 concerns a unary predicate $\mathcal{P}$, and states that:
$\{\{n\} ; n$ ranges over elements of $\mathbb{Q}: \mathcal{P}[n]\}$ is countable

[^0]for all values of the parameters.
One can prove the following proposition
(2) For every non empty topological space $T$ and for every subset $A$ of $T$ holds $\operatorname{Der} A=\{x ; x$ ranges over points of $T: x \in \overline{A \backslash\{x\}}\}$.
Let us note that every topological structure which is finite is also secondcountable.

One can verify that $\mathbb{R}$ is non countable.
One can verify the following observations:

* every set which is non countable is also non finite,
* every set which is non finite is also non trivial, and
* there exists a set which is non countable and non empty.

We adopt the following rules: $T$ is a non empty topological space, $A, B$ are subsets of $T$, and $F, G$ are families of subsets of $T$.

One can prove the following propositions:
(3) $A$ is closed iff $\operatorname{Der} A \subseteq A$.
(4) Let $T$ be a non empty topological structure, $B$ be a basis of $T$, and $V$ be a subset of $T$. Suppose $V$ is open and $V \neq \emptyset$. Then there exists a subset $W$ of $T$ such that $W \in B$ and $W \subseteq V$ and $W \neq \emptyset$.

## 2. Regular Formalization: Separable Spaces

The following propositions are true:
(5) density $T \leq$ weight $T$.
(6) $T$ is separable iff there exists a subset of $T$ which is dense and countable.
(7) If $T$ is second-countable, then $T$ is separable.

One can check that every non empty topological space which is secondcountable is also separable.

The following four propositions are true:
(8) Let $T$ be a non empty topological space and $A, B$ be subsets of $T$. If $A$ and $B$ are separated, then $\operatorname{Fr}(A \cup B)=\operatorname{Fr} A \cup \operatorname{Fr} B$.
(9) If $F$ is locally finite, then $\operatorname{Fr} \bigcup F \subseteq \bigcup \operatorname{Fr} F$.
(10) For every discrete non empty topological space $T$ holds $T$ is separable iff $\overline{\overline{\Omega_{T}}} \leq \aleph_{0}$.
(11) For every discrete non empty topological space $T$ holds $T$ is separable iff $T$ is countable.

## 3. Families of Subsets Closed for Countable Unions and Complement

Let us consider $T, F$. We say that $F$ is all-open-containing if and only if:
(Def. 2) For every subset $A$ of $T$ such that $A$ is open holds $A \in F$.
Let us consider $T, F$. We say that $F$ is all-closed-containing if and only if:
(Def. 3) For every subset $A$ of $T$ such that $A$ is closed holds $A \in F$.
Let $T$ be a set and let $F$ be a family of subsets of $T$. We say that $F$ is closed for countable unions if and only if:
(Def. 4) For every countable family $G$ of subsets of $T$ such that $G \subseteq F$ holds $\bigcup G \in F$.
Let $T$ be a set. Note that every $\sigma$-field of subsets of $T$ is closed for countable unions.

One can prove the following proposition
(12) For every set $T$ and for every family $F$ of subsets of $T$ such that $F$ is closed for countable unions holds $\emptyset \in F$.
Let $T$ be a set. One can verify that every family of subsets of $T$ which is closed for countable unions is also non empty.

Next we state the proposition
(13) Let $T$ be a set and $F$ be a family of subsets of $T$. Then $F$ is a $\sigma$-field of subsets of $T$ if and only if $F$ is closed for complement operator and closed for countable unions.
Let $T$ be a set and let $F$ be a family of subsets of $T$. We say that $F$ is closed for countable meets if and only if:
(Def. 5) For every countable family $G$ of subsets of $T$ such that $G \subseteq F$ holds $\bigcap G \in F$.
Next we state four propositions:
(14) Let $F$ be a family of subsets of $T$. Then the following statements are equivalent
(i) $F$ is all-closed-containing and closed for complement operator,
(ii) $F$ is all-open-containing and closed for complement operator.
(15) For every set $T$ and for every family $F$ of subsets of $T$ such that $F$ is closed for complement operator holds $F=F^{\mathrm{c}}$.
(16) Let $T$ be a set and $F, G$ be families of subsets of $T$. If $F \subseteq G$ and $G$ is closed for complement operator, then $F^{\mathrm{c}} \subseteq G$.
(17) Let $T$ be a set and $F$ be a family of subsets of $T$. Then the following statements are equivalent
(i) $\quad F$ is closed for countable meets and closed for complement operator,
(ii) $F$ is closed for countable unions and closed for complement operator.

Let us consider $T$. One can verify that every family of subsets of $T$ which is all-open-containing, closed for complement operator, and closed for countable unions is also all-closed-containing and closed for countable meets and every family of subsets of $T$ which is all-closed-containing, closed for complement operator, and closed for countable meets is also all-open-containing and closed for countable unions.

## 4. On the Families of Subsets

Let $T$ be a set and let $F$ be a countable family of subsets of $T$. Note that $F^{\mathrm{c}}$ is countable.

Let us consider $T$. Note that every family of subsets of $T$ which is empty is also open and closed.

Let us consider $T$. One can check that there exists a family of subsets of $T$ which is countable, open, and closed.

We now state the proposition
(18) For every set $T$ holds $\emptyset$ is an empty family of subsets of $T$.

Let us observe that every set which is empty is also countable.

## 5. Collective Properties of Families

One can prove the following two propositions:
(19) If $F=\{A\}$, then $A$ is open iff $F$ is open.
(20) If $F=\{A\}$, then $A$ is closed iff $F$ is closed.

Let $T$ be a set and let $F, G$ be families of subsets of $T$. Then $F \cap G$ is a family of subsets of $T$. Then $F \mathbb{ש} G$ is a family of subsets of $T$.

Next we state a number of propositions:
(21) If $F$ is closed and $G$ is closed, then $F \cap G$ is closed.
(22) If $F$ is closed and $G$ is closed, then $F \uplus G$ is closed.
(23) If $F$ is open and $G$ is open, then $F \cap G$ is open.
(24) If $F$ is open and $G$ is open, then $F \in G$ is open.
(25) For every set $T$ and for all families $F, G$ of subsets of $T$ holds $\overline{\overline{F \cap G}} \leq$ $\overline{\overline{: F, G:}}$.
(26) For every set $T$ and for all families $F, G$ of subsets of $T$ holds $\overline{\overline{F \uplus G}} \leq$ $\overline{\overline{[F, G:]}}$.
(27) For all sets $F, G$ holds $\bigcup(F \uplus G) \subseteq \bigcup F \cup \bigcup G$.
(28) For all sets $F, G$ such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcup F \cup \bigcup G=\bigcup(F ש G)$.
(29) For every set $F$ holds $\emptyset \in F=\emptyset$.
(30) For all sets $F, G$ such that $F \in G=\emptyset$ holds $F=\emptyset$ or $G=\emptyset$.
(31) For all sets $F, G$ such that $F \cap G=\emptyset$ holds $F=\emptyset$ or $G=\emptyset$.
(32) For all sets $F, G$ holds $\bigcap(F ש G) \subseteq \bigcap F \cup \bigcap G$.
(33) For all sets $F, G$ such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcap(F ש G)=\bigcap F \cup \bigcap G$.
(34) For all sets $F, G$ such that $F \neq \emptyset$ and $G \neq \emptyset$ holds $\bigcap F \cap \bigcap G=\bigcap(F \cap G)$.

## 6. $F_{\sigma}$ And $G_{\delta}$ Types of Subsets

Let us consider $T, A$. We say that $A$ is $F_{\sigma}$ if and only if:
(Def. 6) There exists a closed countable family $F$ of subsets of $T$ such that $A=$ $\bigcup F$.
Let us consider $T, A$. We say that $A$ is $G_{\delta}$ if and only if:
(Def. 7) There exists an open countable family $F$ of subsets of $T$ such that $A=$ $\cap F$.
The following propositions are true:
(35) $\emptyset_{T}$ is $F_{\sigma}$.
(36) $\emptyset_{T}$ is $G_{\delta}$.

Let us consider $T$. Note that $\emptyset_{T}$ is $F_{\sigma}$ and $G_{\delta}$.
Next we state two propositions:
(37) $\Omega_{T}$ is $F_{\sigma}$.
(38) $\Omega_{T}$ is $G_{\delta}$.

Let us consider $T$. One can verify that $\Omega_{T}$ is $F_{\sigma}$ and $G_{\delta}$.
One can prove the following propositions:
(39) If $A$ is $F_{\sigma}$, then $A^{\mathrm{c}}$ is $G_{\delta}$.
(40) If $A$ is $G_{\delta}$, then $A^{\mathrm{c}}$ is $F_{\sigma}$.
(41) If $A$ is $F_{\sigma}$ and $B$ is $F_{\sigma}$, then $A \cap B$ is $F_{\sigma}$.
(42) If $A$ is $F_{\sigma}$ and $B$ is $F_{\sigma}$, then $A \cup B$ is $F_{\sigma}$.
(43) If $A$ is $G_{\delta}$ and $B$ is $G_{\delta}$, then $A \cup B$ is $G_{\delta}$.
(44) If $A$ is $G_{\delta}$ and $B$ is $G_{\delta}$, then $A \cap B$ is $G_{\delta}$.
(45) For every subset $A$ of $T$ such that $A$ is closed holds $A$ is $F_{\sigma}$.
(46) For every subset $A$ of $T$ such that $A$ is open holds $A$ is $G_{\delta}$.
(47) For every subset $A$ of $\mathbb{R}^{\mathbf{1}}$ such that $A=\mathbb{Q}$ holds $A$ is $F_{\sigma}$.

## 7. $T_{1 / 2}$ Topological Spaces

Let $T$ be a topological space. We say that $T$ is $T_{1 / 2}$ if and only if:
(Def. 8) For every subset $A$ of $T$ holds Der $A$ is closed.
We now state three propositions:
(48) For every topological space $T$ such that $T$ is $T_{1}$ holds $T$ is $T_{1 / 2}$.
(49) For every non empty topological space $T$ such that $T$ is $T_{1 / 2}$ holds $T$ is $T_{0}$.
(50) For every non empty topological space $T$ holds every point $p$ of $T$ is isolated in $\Omega_{T}$ or an accumulation point of $\Omega_{T}$.
Let us note that every topological space which is $T_{1 / 2}$ is also $T_{0}$ and every topological space which is $T_{1}$ is also $T_{1 / 2}$.

## 8. Condensation Points

Let us consider $T, A$ and let $x$ be a point of $T$. We say that $x$ is a condensation point of $A$ if and only if:
(Def. 9) For every neighbourhood $N$ of $x$ holds $N \cap A$ is not countable.
In the sequel $x$ denotes a point of $T$.
One can prove the following proposition
(51) If $x$ is a condensation point of $A$ and $A \subseteq B$, then $x$ is a condensation point of $B$.
Let us consider $T, A$. The functor $A^{0}$ yielding a subset of $T$ is defined as follows:
(Def. 10) For every point $x$ of $T$ holds $x \in A^{0}$ iff $x$ is a condensation point of $A$. The following propositions are true:
(52) For every point $p$ of $T$ such that $p$ is a condensation point of $A$ holds $p$ is an accumulation point of $A$.
(53) $A^{0} \subseteq \operatorname{Der} A$.
(54) $A^{0}=\overline{A^{0}}$.
(55) If $A \subseteq B$, then $A^{0} \subseteq B^{0}$.
(56) If $x$ is a condensation point of $A \cup B$, then $x$ is a condensation point of $A$ or a condensation point of $B$.
(57) $A \cup B^{0}=A^{0} \cup B^{0}$.
(58) If $A$ is countable, then there exists no point of $T$ which is a condensation point of $A$.
(59) If $A$ is countable, then $A^{0}=\emptyset$.

Let us consider $T$ and let $A$ be a countable subset of $T$. Note that $A^{0}$ is empty.

The following proposition is true
(60) If $T$ is second-countable, then there exists a basis of $T$ which is countable.

Let us mention that there exists a topological space which is second-countable and non empty.

## 9. Borel Families of Subsets

Let us consider $T$. Observe that TotFam $T$ is non empty, all-open-containing, closed for complement operator, and closed for countable unions.

We now state four propositions:
(61) For every set $T$ and for every sequence $A$ of subsets of $T$ holds $\operatorname{rng} A$ is a countable non empty family of subsets of $T$.
(62) Let $T, F$ be sets. Then $F$ is a $\sigma$-field of subsets of $T$ if and only if $F$ is a closed for complement operator $\sigma$-field of subsets-like non empty family of subsets of $T$.
(63) For all families $F, G$ of subsets of $T$ such that $F$ is all-open-containing and $F \subseteq G$ holds $G$ is all-open-containing.
(64) Let $F, G$ be families of subsets of $T$. Suppose $F$ is all-closed-containing and $F \subseteq G$. Then $G$ is all-closed-containing.
Let $T$ be a 1 -sorted structure. A $\sigma$-field of subsets of $T$ is a $\sigma$-field of subsets of the carrier of $T$.

Let $T$ be a non empty topological space. Note that there exists a family of subsets of $T$ which is closed for complement operator, closed for countable unions, closed for countable meets, all-closed-containing, and all-opencontaining.

We now state the proposition
(65) $\sigma(\operatorname{TotFam} T)$ is all-open-containing, closed for complement operator, and closed for countable unions.
Let us consider $T$. One can verify that $\sigma(\operatorname{TotFam} T)$ is all-open-containing, closed for complement operator, and closed for countable unions.

Let $T$ be a non empty 1 -sorted structure. Note that there exists a family of subsets of $T$ which is $\sigma$-field of subsets-like, closed for complement operator, closed for countable unions, and non empty.

Let $T$ be a non empty topological space. One can verify that every $\sigma$-field of subsets of $T$ is closed for countable unions.

We now state the proposition
(66) Let $T$ be a non empty topological space and $F$ be a family of subsets of $T$. Suppose $F$ is closed for complement operator and closed for countable unions. Then $F$ is a $\sigma$-field of subsets of $T$.

Let $T$ be a non empty topological space. Note that there exists a $\sigma$-field of subsets of $T$ which is all-open-containing.

Let $T$ be a non empty topological space. Note that Topology $(T)$ is open and all-open-containing.

We now state the proposition
(67) Let $X$ be a family of subsets of $T$. Then there exists an all-opencontaining closed for complement operator closed for countable unions family $Y$ of subsets of $T$ such that
(i) $X \subseteq Y$, and
(ii) for every all-open-containing closed for complement operator closed for countable unions family $Z$ of subsets of $T$ such that $X \subseteq Z$ holds $Y \subseteq Z$.
Let us consider $T$. The functor BorelSets $T$ yields an all-open-containing closed for complement operator closed for countable unions family of subsets of $T$ and is defined by the condition (Def. 11).
(Def. 11) Let $G$ be an all-open-containing closed for complement operator closed for countable unions family of subsets of $T$. Then BorelSets $T \subseteq G$.
Next we state three propositions:
(68) For every closed family $F$ of subsets of $T$ holds $F \subseteq$ BorelSets $T$.
(69) For every open family $F$ of subsets of $T$ holds $F \subseteq$ BorelSets $T$.
(70) BorelSets $T=\sigma($ Topology $(T))$.

Let us consider $T, A$. We say that $A$ is Borel if and only if:
(Def. 12) $\quad A \in$ BorelSets $T$.
Let us consider $T$. Note that every subset of $T$ which is $F_{\sigma}$ is also Borel.
Let us consider $T$. Note that every subset of $T$ which is $G_{\delta}$ is also Borel.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281290, 1990.
[3] Grzegorz Bancerek. Countable sets and Hessenberg's theorem. Formalized Mathematics, 2(1):65-69, 1991.
[4] Grzegorz Bancerek. On constructing topological spaces and Sorgenfrey line. Formalized Mathematics, 13(1):171-179, 2005.
[5] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[6] Józef Białas. The $\sigma$-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[7] Józef Białas and Yatsuka Nakamura. Dyadic numbers and $\mathrm{T}_{4}$ topological spaces. Formalized Mathematics, 5(3):361-366, 1996.
[8] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481485, 1991.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[13] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[14] Ryszard Engelking. General Topology, volume 60 of Monografie Matematyczne. PWN Polish Scientific Publishers, Warsaw, 1977.
[15] Adam Grabowski. On the boundary and derivative of a set. Formalized Mathematics, 13(1):139-146, 2005.
[16] Jolanta Kamieńska. Representation theorem for Heyting lattices. Formalized Mathematics, 4(1):41-45, 1993.
[17] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[18] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.
[19] Andrzej Nȩdzusiak. $\sigma$-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[20] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239-244, 1990.
[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[22] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.
[23] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[24] Marta Pruszyńska and Marek Dudzicz. On the isomorphism between finite chains. Formalized Mathematics, 9(2):429-430, 2001.
[25] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, $5(2): 233-236,1996$.
[26] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[27] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[28] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[29] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[30] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[31] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[32] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received August 30, 2005


[^0]:    ${ }^{1}$ This work has been partially supported by the KBN grant 4 T11C 03924 and the FP6 IST grant TYPES No. 510996.

