Tietze Extension Theorem

Artur Korniłowicz Institute of Computer Science University of Białystok Sosnowa 64, 15-887 Białystok Poland Grzegorz Bancerek Department of Theoretical Computer Science Białystok Technical University Poland

Adam Naumowicz Institute of Computer Science University of Białystok Akademicka 2, 15-267 Białystok Poland

Summary. In this paper we formalize the Tietze extension theorem using as a basis the proof presented at the PlanetMath web server¹.

MML identifier: TIETZE, version: 7.5.01 4.39.921

The articles [24], [26], [1], [2], [23], [11], [4], [21], [27], [5], [28], [7], [6], [17], [16], [22], [18], [20], [19], [25], [9], [10], [13], [14], [8], [12], [3], and [15] provide the notation and terminology for this paper.

We adopt the following rules: r, s denote real numbers, X denotes a set, and f, g, h denote real-yielding functions.

The following propositions are true:

- (1) For all real numbers a, b, c such that $|a b| \le c$ holds $b c \le a$ and $a \le b + c$.
- (2) If r < s, then $]-\infty, r]$ misses $[s, +\infty]$.
- (3) If $r \leq s$, then $]-\infty, r[$ misses $]s, +\infty[$.
- (4) If $f \subseteq g$, then $h f \subseteq h g$.
- (5) If $f \subseteq g$, then $f h \subseteq g h$.

C 2005 University of Białystok ISSN 1426-2630

 $^{{}^{1} \}verb+http://planetmath.org/encyclopedia/ProofOfTietzeExtensionTheorem2.html+ interval and interval and$

Let f be a real-yielding function, let r be a real number, and let X be a set. We say that f is absolutely bounded by r in X if and only if:

(Def. 1) For every set x such that $x \in X \cap \text{dom } f$ holds $|f(x)| \leq r$.

Let us mention that there exists a sequence of real numbers which is summable, constant, and convergent.

We now state the proposition

(6) For every empty topological space T_1 and for every topological space T_2 holds every map from T_1 into T_2 is continuous.

Let T_1 be a topological space and let T_2 be a non empty topological space. Observe that there exists a map from T_1 into T_2 which is continuous.

We now state several propositions:

- (7) For all summable sequences f, g of real numbers such that for every natural number n holds $f(n) \leq g(n)$ holds $\sum f \leq \sum g$.
- (8) For every sequence f of real numbers such that f is absolutely summable holds $|\sum f| \leq \sum |f|$.
- (9) Let f be a sequence of real numbers and a, r be positive real numbers. Suppose r < 1 and for every natural number n holds $|f(n) - f(n+1)| \le a \cdot r^n$. Then f is convergent and for every natural number n holds $|\lim f - f(n)| \le \frac{a \cdot r^n}{1-r}$.
- (10) Let f be a sequence of real numbers and a, r be positive real numbers. Suppose r < 1 and for every natural number n holds $|f(n) - f(n+1)| \le a \cdot r^n$. Then $\lim f \ge f(0) - \frac{a}{1-r}$ and $\lim f \le f(0) + \frac{a}{1-r}$.
- (11) Let X, Z be non empty sets and F be a sequence of partial functions from X into \mathbb{R} . Suppose Z is common for elements of F. Let a, r be positive real numbers. Suppose r < 1 and for every natural number n holds F(n) - F(n+1) is absolutely bounded by $a \cdot r^n$ in Z. Then F is uniformconvergent on Z and for every natural number n holds $\lim_Z F - F(n)$ is absolutely bounded by $\frac{a \cdot r^n}{1-r}$ in Z.
- (12) Let X, Z be non empty sets and F be a sequence of partial functions from X into \mathbb{R} . Suppose Z is common for elements of F. Let a, r be positive real numbers. Suppose r < 1 and for every natural number n holds F(n) - F(n+1) is absolutely bounded by $a \cdot r^n$ in Z. Let z be an element of Z. Then $(\lim_Z F)(z) \ge F(0)(z) - \frac{a}{1-r}$ and $(\lim_Z F)(z) \le F(0)(z) + \frac{a}{1-r}$.
- (13) Let X, Z be non empty sets and F be a sequence of partial functions from X into \mathbb{R} . Suppose Z is common for elements of F. Let a, r be positive real numbers and f be a function from Z into \mathbb{R} . Suppose r < 1and for every natural number n holds F(n) - f is absolutely bounded by $a \cdot r^n$ in Z. Then F is point-convergent on Z and $\lim_Z F = f$.

Let S, T be topological structures, let A be an empty subset of S, and let f be a map from S into T. Note that $f \upharpoonright A$ is empty.

Let T be a topological space and let A be a closed subset of T. Note that $T \upharpoonright A$ is closed.

The following propositions are true:

- (14) Let X, Y be non empty topological spaces, X_1, X_2 be non empty subspaces of X, f_1 be a map from X_1 into Y, and f_2 be a map from X_2 into Y. Suppose X_1 misses X_2 or $f_1 \upharpoonright (X_1 \cap X_2) = f_2 \upharpoonright (X_1 \cap X_2)$. Let x be a point of X. Then
 - (i) if $x \in$ the carrier of X_1 , then $(f_1 \cup f_2)(x) = f_1(x)$, and
- (ii) if $x \in$ the carrier of X_2 , then $(f_1 \cup f_2)(x) = f_2(x)$.
- (15) Let X, Y be non empty topological spaces, X_1 , X_2 be non empty subspaces of X, f_1 be a map from X_1 into Y, and f_2 be a map from X_2 into Y. If X_1 misses X_2 or $f_1 \upharpoonright (X_1 \cap X_2) = f_2 \upharpoonright (X_1 \cap X_2)$, then $\operatorname{rng}(f_1 \cup f_2) \subseteq \operatorname{rng} f_1 \cup \operatorname{rng} f_2$.
- (16) Let X, Y be non empty topological spaces, X_1 , X_2 be non empty subspaces of X, f_1 be a map from X_1 into Y, and f_2 be a map from X_2 into Y. Suppose X_1 misses X_2 or $f_1 \upharpoonright (X_1 \cap X_2) = f_2 \upharpoonright (X_1 \cap X_2)$. Then for every subset A of X_1 holds $(f_1 \cup f_2)^{\circ}A = f_1^{\circ}A$ and for every subset A of X_2 holds $(f_1 \cup f_2)^{\circ}A = f_2^{\circ}A$.
- (17) If $f \subseteq g$ and g is absolutely bounded by r in X, then f is absolutely bounded by r in X.
- (18) If $X \subseteq \text{dom } f$ or $\text{dom } g \subseteq \text{dom } f$ and if $f \upharpoonright X = g \upharpoonright X$ and if f is absolutely bounded by r in X, then g is absolutely bounded by r in X.
- In the sequel T is a non empty topological space and A is a closed subset of T.

One can prove the following propositions:

- (19) Suppose r > 0 and T is T_4 . Let f be a continuous map from $T \upharpoonright A$ into \mathbb{R}^1 . Suppose f is absolutely bounded by r in A. Then there exists a continuous map g from T into \mathbb{R}^1 such that g is absolutely bounded by $\frac{r}{3}$ in dom g and f g is absolutely bounded by $\frac{2 \cdot r}{3}$ in A.
- (20) Suppose that for all non empty closed subsets A, B of T such that A misses B there exists a continuous map f from T into \mathbb{R}^1 such that $f^{\circ}A = \{0\}$ and $f^{\circ}B = \{1\}$. Then T is a T_4 space.
- (21) Let f be a map from T into \mathbb{R}^1 and x be a point of T. Then f is continuous at x if and only if for every real number e such that e > 0 there exists a subset H of T such that H is open and $x \in H$ and for every point y of T such that $y \in H$ holds |f(y) f(x)| < e.
- (22) Let F be a sequence of partial functions from the carrier of T into \mathbb{R} . Suppose that
 - (i) F is uniform-convergent on the carrier of T, and
 - (ii) for every natural number i holds F(i) is a continuous map from T into

 \mathbb{R}^1 .

Then $\lim_{\text{the carrier of } T} F$ is a continuous map from T into \mathbb{R}^1 .

- (23) Let T be a non empty topological space, f be a map from T into \mathbb{R}^1 , and r be a positive real number. Then f is absolutely bounded by r in the carrier of T if and only if f is a map from T into $[-r, r]_{\mathrm{T}}$.
- (24) If f-g is absolutely bounded by r in X, then g-f is absolutely bounded by r in X.
- (25) Suppose T is T_4 . Let given A and f be a map from $T \upharpoonright A$ into $[-1, 1]_T$. Suppose f is continuous. Then there exists a continuous map g from T into $[-1, 1]_T$ such that $g \upharpoonright A = f$.
- (26) Suppose that for every non empty closed subset A of T and for every continuous map f from $T \upharpoonright A$ into $[-1, 1]_T$ there exists a continuous map g from T into $[-1, 1]_T$ such that $g \upharpoonright A = f$. Then T is T_4 .

References

- [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281– 290, 1990.
- [3] Leszek Borys. Paracompact and metrizable spaces. *Formalized Mathematics*, 2(4):481–485, 1991.
- [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507–513, 1990.
- [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55– 65, 1990.
- [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
- [8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^2 . Formalized Mathematics, 6(3):427–440, 1997.
- [9] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
- [10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces fundamental concepts. Formalized Mathematics, 2(4):605–608, 1991.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35–40, 1990.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607–610, 1990.
- [13] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665–674, 1991.
- [14] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Mathematics, 3(1):1–16, 1992.
- [15] Artur Korniłowicz. On the real valued functions. *Formalized Mathematics*, 13(1):181–187, 2005.
- [16] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273–275, 1990.
- [17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269–272, 1990.
- [18] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17–28, 1991.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223–230, 1990.
- [20] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992.

- [21] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213–216, 1991.
- [22] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449– 452, 1991.
- [23] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [24] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
- 1990.
 [25] Andrzej Trybulec. A Borsuk theorem on homotopy types. *Formalized Mathematics*, 2(4):535-545, 1991.
- [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
- [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73–83, 1990.
- [28] Edmund Woronowicz. Relations defined on sets. *Formalized Mathematics*, 1(1):181–186, 1990.

Received September 14, 2005