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Summary. This article contains partial sum and partial product of some

series which are often used.
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The notation and terminology used in this paper have been introduced in the

following articles: [2], [1], [3], [4], [5], [6], and [7].

We use the following convention: n is a natural number, a, b, c, d are real

numbers, and s is a sequence of real numbers.

We now state a number of propositions:

(1) (a + b + c)2 = a2 + b2 + c2 + 2 · a · b + 2 · a · c + 2 · b · c.

(2) (a + b)3 = a3 + 3 · a2 · b + 3 · b2 · a + b3.

(3) ((a − b) + c)2 = (((a2 + b2 + c2) − 2 · a · b) + 2 · a · c) − 2 · b · c.

(4) (a − b − c)2 = ((a2 + b2 + c2) − 2 · a · b − 2 · a · c) + 2 · b · c.

(5) (a − b)3 = ((a3 − 3 · a2 · b) + 3 · b2 · a) − b3.

(6) (a + b)4 = a4 + 4 · a3 · b + 6 · a2 · b2 + 4 · b3 · a + b4.

(7) (a + b + c + d)2 = a2 + b2 + c2 + d2 + (2 · a · b + 2 · a · c + 2 · a · d) + (2 · b ·

c + 2 · b · d) + 2 · c · d.
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(8) (a + b + c)3 = a3 + b3 + c3 + (3 · a2 · b + 3 · a2 · c) + (3 · b2 · a + 3 · b2 · c) +

(3 · c2 · a + 3 · c2 · b) + 6 · a · b · c.

(9) If a 6= 0, then (( 1
a
)n+1 + an+1)2 = ( 1

a
)2·n+2 + a2·n+2 + 2.

(10) If a 6= 1 and for every n holds s(n) = an, then (
∑

κ

α=0 s(α))κ∈N(n) =
1−a

n+1

1−a
.

(11) If a 6= 1 and a 6= 0 and for every n holds s(n) = ( 1
a
)n, then for every n

holds (
∑

κ

α=0 s(α))κ∈N(n) =
( 1

a
)n

−a

1−a
.

(12) If for every n holds s(n) = 10n + 2 · n + 1, then (
∑

κ

α=0 s(α))κ∈N(n) =

(10n+1

9 − 1
9) + (n + 1)2.

(13) If for every n holds s(n) = (2 · n− 1) + (1
2)n, then (

∑
κ

α=0 s(α))κ∈N(n) =

(n2 + 1) − (1
2)n.

(14) If for every n holds s(n) = n · (1
2)n, then (

∑
κ

α=0 s(α))κ∈N(n) = 2 − (2 +

n) · (1
2)n.

(15) If for every n holds s(n) = ((1
2)n + 2n)2, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = −
( 1

4
)n

3 + 4n+1

3 + 2 · n + 3.

(16) If for every n holds s(n) = ((1
3)n + 3n)2, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = −
( 1

9
)n

8 + 9n+1

8 + 2 · n + 3.

(17) If for every n holds s(n) = n · 2n, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = (n · 2n+1 − 2n+1) + 2.

(18) If for every n holds s(n) = (2 · n + 1) · 3n, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = n · 3n+1 + 1.

(19) If a 6= 1 and for every n holds s(n) = n · an, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = a·(1−a
n)

(1−a)2
− n·a

n+1

1−a
.

(20) If for every n holds s(n) = 1
(root2(n+1))+(root2(n)) , then (

∑
κ

α=0 s(α))κ∈N(n) =

root2(n + 1).

(21) If for every n holds s(n) = 2n + (1
2)n, then for every n holds

(
∑

κ

α=0 s(α))κ∈N(n) = (2n+1 − (1
2)n) + 1.

(22) If for every n holds s(n) = n! · n + n

(n+1)! , then for every n such that

n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = (n + 1)! − 1
(n+1)! .

(23) Suppose a 6= 1 and for every n such that n ≥ 1 holds s(n) = ( a

a−1)n and

s(0) = 0. Let given n. If n ≥ 1, then (
∑

κ

α=0 s(α))κ∈N(n) = a ·(( a

a−1)n−1).

(24) If for every n such that n ≥ 1 holds s(n) = 2n · 3·n−1
4 and s(0) = 0, then

for every n such that n ≥ 1 holds (
∑

κ

α=0 s(α))κ∈N(n) = 2n · 3·n−4
2 + 2.

(25) If for every n holds s(n) = n+1
n+2 , then (the partial product of s)(n) = 1

n+2 .

(26) If for every n holds s(n) = 1
n+1 , then (the partial product of s)(n) =

1
(n+1)! .
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(27) Suppose that for every n such that n ≥ 1 holds s(n) = n and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = n!.

(28) Suppose that for every n such that n ≥ 1 holds s(n) = a

n
and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = a
n

n! .

(29) Suppose that for every n such that n ≥ 1 holds s(n) = a and s(0) = 1.

Let given n. If n ≥ 1, then (the partial product of s)(n) = an.

(30) Suppose that for every n such that n ≥ 2 holds s(n) = 1 − 1
n

2 and

s(0) = 1 and s(1) = 1. Let given n. If n ≥ 2, then (the partial product of

s)(n) = n+1
2·n .
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