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Summary. In this article the authors prove linearity of the Lebesgue

integral of simple valued function.
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The notation and terminology used here are introduced in the following papers:

[16], [17], [1], [15], [2], [18], [7], [9], [8], [3], [4], [5], [6], [10], [11], [12], [14], and

[13].

One can prove the following propositions:

(1) Let F , G, H be finite sequences of elements of R. Suppose that

(i) for every natural number i such that i ∈ domF holds 0
R
≤ F (i),

(ii) for every natural number i such that i ∈ domG holds 0
R
≤ G(i),

(iii) domF = domG, and

(iv) H = F + G.

Then
∑

H =
∑

F +
∑

G.

(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, n be a natural number, f be a partial function from X

to R, F be a finite sequence of separated subsets of S, and a, x be finite

sequences of elements of R. Suppose that f is simple function in S and

dom f 6= ∅ and for every set x such that x ∈ dom f holds 0
R
≤ f(x) and

F and a are representation of f and domx = domF and for every natural

number i such that i ∈ domx holds x(i) = a(i) · (M ·F )(i) and lenF = n.

Then
∫

X

f dM =
∑

x.
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(3) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial

function from X to R, M be a σ-measure on S, F be a finite sequence

of separated subsets of S, and a, x be finite sequences of elements of R.

Suppose that

(i) f is simple function in S,

(ii) dom f 6= ∅,

(iii) for every set x such that x ∈ dom f holds 0
R
≤ f(x),

(iv) F and a are representation of f ,

(v) domx = domF, and

(vi) for every natural number n such that n ∈ domx holds x(n) = a(n) ·

(M · F )(n).

Then
∫

X

f dM =
∑

x.

(4) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial

function from X to R, and M be a σ-measure on S. Suppose f is simple

function in S and dom f 6= ∅ and for every set x such that x ∈ dom f holds

0
R
≤ f(x). Then there exists a finite sequence F of separated subsets of

S and there exist finite sequences a, x of elements of R such that

(i) F and a are representation of f ,

(ii) domx = domF,

(iii) for every natural number n such that n ∈ domx holds x(n) = a(n) ·

(M · F )(n), and

(iv)
∫

X

f dM =
∑

x.

(5) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) f is simple function in S,

(ii) dom f 6= ∅,

(iii) for every set x such that x ∈ dom f holds 0
R
≤ f(x),

(iv) g is simple function in S,

(v) dom g = dom f, and

(vi) for every set x such that x ∈ dom g holds 0
R
≤ g(x).

Then

(vii) f + g is simple function in S,

(viii) dom(f + g) 6= ∅,

(ix) for every set x such that x ∈ dom(f + g) holds 0
R
≤ (f + g)(x), and

(x)
∫

X

f + g dM =
∫

X

f dM +
∫

X

g dM.

(6) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f , g be partial functions from X to R, and c be an extended

real number. Suppose that f is simple function in S and dom f 6= ∅ and

for every set x such that x ∈ dom f holds 0
R

≤ f(x) and 0
R

≤ c and
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c < +∞ and dom g = dom f and for every set x such that x ∈ dom g

holds g(x) = c · f(x). Then
∫

X

g dM = c ·
∫

X

f dM.
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